Automated neuron tracing using probability hypothesis density filtering

Miroslav Radojević and Erik Meijering

Supplementary Information

```
Algorithm 1 Neuron tracing
    \(1: k=0 \quad \triangleright\) Initialize
2: \(\left\{\omega_{0 \mid 0}^{n}, \mathrm{x}_{0 \mid 0}^{n}\right\}_{n=1}^{\rho N_{0}} \quad \triangleright\) Initial particle and observation set
3: \(\left\{\hat{\mathrm{x}}_{0, i}\right\}_{i=1}^{N_{0}} \quad \triangleright\) Initial estimate
    repeat
5: \(\quad k=k+1\)
6: \(\quad \mathrm{p}_{i}^{n} \sim h\left(\mathrm{p} \mid \hat{\mathrm{x}}_{k-1, i}\right) \quad n \in\left[1, \rho N_{k-1}\right] \quad \triangleright\) Draw observation particles
7: \(\quad \mathrm{p}_{i, j}^{n} \in \mathcal{C}_{j}, \quad j \in\left[1, M_{k}\right], \quad n \in\left[1,\left|\mathcal{C}_{j}\right|\right] \quad \triangleright\) Cluster observation particles
8: \(\quad \mathrm{z}_{k, j}=\left[\mathrm{p}_{i, j}^{\hat{n}}, \tau\left(\mathrm{p}_{i, j}^{\hat{n}}\right)\right] \quad \triangleright\) Select representative sample
9: \(\mathrm{Z}_{k}=\left\{\mathrm{z}_{k, j}, \ldots, \mathrm{z}_{k, M_{k}}\right\} \quad \triangleright\) Construct observations
10: \(\quad\left\{\omega_{k \mid k}^{n}, \mathrm{x}_{k \mid k}^{n}\right\}_{n=1}^{\rho N_{k}}, \nu_{k},\left\{\hat{\mathrm{x}}_{k, i}\right\}_{i=1}^{N_{k}} \leftarrow \operatorname{SMC}-\mathrm{PHD}\left(\left\{\omega_{k-1 \mid k-1}^{n}, \mathrm{x}_{k-1 \mid k-1}^{n}\right\}_{n=1}^{\rho N_{k-1}}, \mathrm{Z}_{k}\right) \triangleright\) Algorithm 2
    until \(\left[\nu_{k}\right]=0 \quad \triangleright[\cdot] \equiv\) nearest integer
```

```
Algorithm 2 SMC-PHD filtering
    Input: \(\left\{\left(\omega_{k-1 \mid k-1}^{n}, \mathrm{x}_{k-1 \mid k-1}^{n}\right)\right\}_{n=1}^{\rho N_{k-1}},\left\{\mathrm{z}_{k, j}\right\}_{j=1}^{M_{k}} \quad \triangleright D_{k-1}(\mathrm{x})\) approx. observation \(\mathrm{Z}_{k}\)
    for \(n=1, \ldots, \rho N_{k-1}\) do
        for \(m=1, \ldots, \eta\) do
            \(i=(n-1) \eta+m\)
            Draw: \(\mathrm{x}_{k \mid k-1, \mathrm{p}} \sim \pi_{k \mid k-1}\left(\mathrm{x} \mid \mathrm{x}_{k-1 \mid k-1}^{n}\right) \rightarrow \mathrm{x}_{k \mid k-1, \mathrm{p}}^{i} \quad \triangleright\) Persistent object particles
            Compute: \(\omega_{k \mid k-1, \mathrm{p}}^{i}=p_{S} \frac{1}{\eta} \omega_{k-1 \mid k-1}^{n}\)
            Draw: \(\mathrm{x}_{k \mid k-1, \mathrm{~s}} \sim \beta_{k \mid k-1}\left(\mathrm{x} \mid \mathrm{x}_{k-1 \mid k-1}^{n}\right) \rightarrow \mathrm{x}_{k \mid k-1, \mathrm{~s}}^{i} \quad \triangleright\) Spawning object particles
            Compute: \(\omega_{k \mid k-1, \mathrm{~s}}^{i}=p_{S} \frac{1}{\eta} \omega_{k-1 \mid k-1}^{n}\)
        end for
    end for
    \(\left\{\left(\omega_{k \mid k-1}^{n}, \mathrm{x}_{k \mid k-1}^{n}\right)\right\}_{n=1}^{S_{k}}=\left\{\left(\omega_{k \mid k-1, \mathrm{p}}^{n}, \mathrm{x}_{k \mid k-1, \mathrm{p}}^{n}\right)\right\}_{n=1}^{\rho \eta N_{k-1}} \cup\left\{\left(\omega_{k \mid k-1, \mathrm{~s}}^{n}, \mathrm{x}_{k \mid k-1, \mathrm{~s}}^{n}\right)\right\}_{n=1}^{\rho \eta N_{k-1}} \triangleright\) Union of
    particle sets
    for \(n=1, \ldots, S_{k}\) do
    Update: \(\omega_{k \mid k}^{n}=\left(1-p_{D}\right) \omega_{k \mid k-1}^{n}+\sum_{\mathrm{z} \in \mathrm{Z}_{k}} \frac{p_{D} g_{k}\left(\mathrm{z} \mid \mathrm{x}_{k \mid k-1}^{n}\right) \omega_{k \mid k-1}^{n}}{C_{k}(\mathrm{z})+\sum_{n=1}^{S_{k}} p_{D} g_{k}\left(\mathrm{z} \mid \mathrm{x}_{k \mid k-1}^{n}\right) \omega_{k \mid k-1}^{n}}\)
    end for
    \(\nu_{k}=\sum_{n=1}^{S_{k}} \omega_{k \mid k}^{n}\)
                                    \(\triangleright\) Cardinality calculation
16: Estimate: \(\hat{\mathrm{x}}_{k, i} \leftarrow\left\{\omega_{k \mid k}^{n}, \mathrm{x}_{k \mid k-1}^{n}\right\}_{n=1}^{S_{k}} \quad \triangleright\) Mean-shift clustering
17: Resample: \(N_{k}=\left[\nu_{k}\right],\left\{\omega_{k \mid k}^{n}, \mathrm{x}_{k \mid k-1}^{n}\right\}_{n=1}^{S_{k}} \rightarrow\left\{\omega_{k \mid k}^{n}, \mathrm{x}_{k \mid k}^{n}\right\}_{n=1}^{\rho N_{k}}, \omega_{k \mid k}^{n}=\nu_{k} /\left(\rho N_{k}\right)\)
\(\triangleright\) Systematic resampling with \(\rho\) particles per object
```


Figure S1: Transition densities (2D examples) for persistent (A) and spawned (B) objects with $z=0$, $\mathrm{x}^{\prime}=\left[0,0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right], \kappa=2$, and $r_{k}=3$. (C) Importance sampling used in the observation model without the tubularity component, $\tau(\mathrm{p})=1$, and $\kappa=0.5$. Rainbow color coding is used running from blue (indicating low values) to red (indicating high values).

Figure S2: Formation of the observations (2D example). (A) For each object i from iteration $k-1$, particles p_{i}^{n} are sampled from the importance sampling function h, using the state estimate $\hat{\mathrm{x}}_{k-1, i}$. The solid dot indicates the location of $\hat{x}_{k-1, i}$ and the contours represent lines of equal particle weight. (B) The particles are processed by mean-shifting resulting in clusters \mathcal{C}_{j} whose labeled particles are denoted as $\mathrm{p}_{i, j}^{n}$. (C) Each observation $\mathrm{z}_{k, j}$ is obtained from the representative cluster particle $\mathrm{p}_{i, j}^{\hat{n}}$ as described in the main text. Contours represent lines of equal observation likelihood. (D) The clutter intensity function.

Figure S3: Performance as a function of numbers of seeds and rounds for four example cases from the OPF (A-D) and the HCN (E-H) data set. Similar trends were observed for all cases in the respective data sets. Left panel per case: Precision (P), recall (R), and F-score (F) after one round initialized with different numbers of seeds $\left(N_{0}\right)$. Right panel per case: The scores after multiple rounds with a fixed number of seeds $\left(N_{0}=40\right)$. Fifth-order polynomial curves were fit to the data to show approximate trends.

Figure S4: Performance comparison of our method with several other methods on the OPF data set. For each method and each measure, the plotted box indicates the $25-75$ percentile, the horizontal bar indicates the median score, and the whiskers and outliers are drawn using the default settings of R .

Figure S5: Performance comparison of our method with several other methods on the HCN data set. For each method and each measure, the plotted box indicates the 25-75 percentile, the horizontal bar indicates the median score, and the whiskers and outliers are drawn using the default settings of R.

S6: Ability of the tested methods to separate two fibers of similar intensity and scale running closely in parallel. The examples show cases with gradually increasing distance between the fibers: overlap (left column), just separated (middle column), and clearly separated (right column). The tracing results of PHD, GPS, APP2, MST are overlaid (with slight offset) in red color.

Figure S7: Ability of the tested methods to separate three fibers with different intensity and scale running closely in parallel. The examples show cases with gradually increasing distance between the fibers: overlap (left column), just separated (middle column), and clearly separated (right column). The tracing results of PHD, GPS, APP2, MST are overlaid (with slight offset) in red color.

