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Abstract

Motivation: The functionality of neurons and their role in neuronal networks is tightly connected to

the cell morphology. A fundamental problem in many neurobiological studies aiming to unravel

this connection is the digital reconstruction of neuronal cell morphology from microscopic image

data. Many methods have been developed for this, but they are far from perfect, and better meth-

ods are needed.

Results: Here we present a new method for tracing neuron centerlines needed for full reconstruc-

tion. The method uses a fundamentally different approach than previous methods by considering

neuron tracing as a Bayesian multi-object tracking problem. The problem is solved using probabil-

ity hypothesis density filtering. Results of experiments on 2D and 3D fluorescence microscopy

image datasets of real neurons indicate the proposed method performs comparably or even better

than the state of the art.

Availability and Implementation: Software implementing the proposed neuron tracing method

was written in the Java programming language as a plugin for the ImageJ platform. Source code is

freely available for non-commercial use at https://bitbucket.org/miroslavradojevic/phd.

Contact: meijering@imagescience.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate reconstruction of the tree-like structure of neuronal cells

from optical microscopy images is a crucial step in automating the

analysis of single neuron morphology or the connectivity of neur-

onal networks (Donohue and Ascoli, 2011; Meijering, 2010; Peng

et al., 2015). Microscopic images provide detailed information

about the geometrical and topological properties of the neuronal

arbors. Extracting and representing this information in a faithful

and convenient digital format is key to many studies (Ascoli, 2002;

Ascoli et al., 2007; Halavi et al., 2012; Lu et al., 2015; Senft, 2011;

Svoboda, 2011), as digital reconstructions enable neurobiologists to

use computational approaches in addressing open issues in brain re-

search, such as the relation between neuron structure and function,

and the effects of neurodegenerative disease processes and drug

compounds on neuron development and connectivity.

Existing approaches to tracing neurons in images can be broadly

divided into global and local approaches. Global approaches con-

sider the problem from the whole-image perspective and typically in-

volve global image segmentation (Basu et al., 2013; De et al., 2016;

Wearne et al., 2005) or global optimization strategies (Türetken

et al., 2011; Xiao and Peng, 2013). Local approaches, on the other

hand, use local image exploration strategies starting from seed

points (Choromanska et al., 2012; Peng et al., 2011; Yang et al.,

2013) to find segments of the neuronal tree, which are then merged

into a full tree representation. Both approaches have advantages and

disadvantages and they are often combined to profit from their com-

plementarity (Jiménez et al., 2015; Zhao et al., 2011).

A wide variety of computational concepts have been proposed in de-

veloping automated neuron tracing methods, whether global or local

(Acciai et al., 2016). These include active contours (Cai et al., 2006;
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Luo et al., 2015; Wang et al., 2011), tubular models (Santamar�ıa-Pang

et al., 2015), principal curves (Bas and Erdogmus, 2011; Quan et al.,

2016), perceptual grouping (Narayanaswamy et al., 2011), path prun-

ing (Peng et al., 2011; Xiao and Peng, 2013), critical point detection

(Al-Kofahi et al., 2008; Radojevi�c et al., 2016), voxel scooping

(Rodriguez et al., 2009), dynamic and integer programming (Türetken

et al., 2012; Zhang et al., 2007), active learning (Gala et al., 2014),

graph optimization (Chothani et al., 2011; Türetken et al., 2011), tubu-

larity flow field segmentation (Mukherjee et al., 2015), marked point

processes (Basu et al., 2016), iterative back-tracking (Liu et al., 2016),

and more. Space limitations do not permit a full discussion of all these

concepts, but a key characteristic relevant to the present paper is that

the vast majority of them are deterministic by nature. That is, they util-

ize models and algorithms that always assume or pass through the exact

same sequence of states. While this behavior may seem virtuous and

practically convenient, it is nonetheless not very realistic and not neces-

sarily advantageous, for several reasons. For starters, expert human an-

notators, which are still considered to be the gold standard in evaluating

methods, do not operate deterministically: their output will be (slightly)

different every time they repeat a task. Also, any deterministic model is

typically a (gross) simplification of reality, and consequently lacks flexi-

bility in dealing with data variability. Finally, since every run of a deter-

ministic algorithm will yield exactly the same output, it is not possible

to accumulate evidence from multiple iterations.

In this paper we propose a new method for neuron tracing in op-

tical microscopy images that operates probabilistically rather than

deterministically. Focusing on delineating the branch centerlines, it

utilizes a Bayesian approach to blend two sources of information:

the model (based on prior knowledge) and the measurements (from

the image data). The main novelty is that it combines the problems

of neuron segment detection and linking into one framework by per-

forming simultaneous multi-object tracking. Traditional multi-

object (also referred to as multi-target) tracking techniques (Mahler,

2007; Stone et al., 2013) typically assume the number of objects to

be known and/or they explicitly associate measurements with ob-

jects which are then Bayesian filtered individually (Bar-Shalom and

Li, 1995). Since in our application the number of objects (neuron

segments) is unknown a priori, we use a different approach, based

on filtering the so-called probability hypothesis density (PHD) func-

tion (Mahler, 2003). PHD filtering has gained popularity in recent

years as a robust approach to tracking, since it is able to compensate

for missing detections and to remove noise and clutter, while reduc-

ing the computational complexity from exponential to linear as the

number of objects grows. Applications include radar and sonar

tracking (Clark et al., 2007; Tobias and Lanterman, 2005), video

surveillance (Maggio et al., 2008; Wang et al., 2008) and even mo-

tion tracking in microscopy (Schlangen et al., 2016; Wood et al.,

2012), but to the best of our knowledge it has not been explored yet

for neuron tracing. Moreover, our application differs fundamentally

from other works in the sense that the filtering is applied in space ra-

ther than in time. The proposed method is evaluated on a variety of

real image data (both 2D and 3D) taking expert manual annotations

as the gold standard. Its performance is compared with several state-

of-the-art tools for neuron tracing (Chothani et al., 2011; Quan

et al., 2016; Xiao and Peng, 2013).

2 Methods

2.1 Multi-object Bayesian filtering
We consider single-object tracking as a Bayesian inference problem

(Bar-Shalom et al., 2001; S€arkk€a, 2013). The key idea is to estimate

the posterior probability density function (pdf) fkjkðxkjz1:kÞ, where xk

denotes the object state at iteration k, and z1:k the sequence of obser-

vations from iterations 1 to k inclusive. Estimation is accomplished by

sequentially applying prior knowledge to predict the state in the next

iteration and updating this estimate with available observations.

Similarly, multi-object tracking can be formulated as the problem of

updating predictions of the multi-object state Xk ¼ fxk;1; . . . ; xk;Nk
g

with multi-object observations Zk ¼ fzk;1; . . . ; zk;Mk
g, where Nk and

Mk denote the number of objects and observations at iteration k, re-

spectively. Formally:

Prediction :

fkjk�1ðXkjZ1:k�1Þ ¼
ð

Pkjk�1ðXkjXk�1Þfk�1jk�1ðXk�1jZ1:k�1ÞdXk�1

(1)

Update : fkjkðXkjZ1:kÞ ¼
#kðZkjXkÞfkjk�1ðXkjZ1:k�1ÞÐ
#kðZkjXÞfkjk�1ðXjZ1:k�1ÞdX

(2)

where Pkjk�1ðXkjXk�1Þ denotes the multi-object state transition prob-

ability and #kðZkjXkÞ the multi-object likelihood. Filtering the multi-

object posterior fkjkðXkjZ1:kÞ suffers from serious practical obstacles,

as the multi-object state can be very high-dimensional and hard to

sample and integrate efficiently. Moreover, it is necessary to take into

account changes in object numbers, which adds an often intractable

combinatorial burden. Thus more feasible solutions are needed.

2.2 Probability hypothesis density filtering
To overcome the difficulties of direct multi-object Bayesian filtering,

we propose instead to filter the first-order statistical moment of the

multi-object posterior fkjkðXkjZ1:kÞ, computed as

DkjkðxjZ1:kÞ ¼
ð

dXðxÞfkjkðXjZ1:kÞdX (3)

where dX denotes the sum of Dirac deltas at elements of X. For the

sake of notational convenience we abbreviate the left-hand side of

(3) to DkjkðxÞ in the sequel. This function, known as the probability

hypothesis density (PHD) (Mahler, 2003), is a non-negative function

whose integral
Ð

DkjkðxÞdx yields the expected number of objects

�k 2 R. PHD filtering allows for joint detection and estimation of an

unknown and varying number of objects and their individual states

using the Bayesian prediction and update framework. Here, multi-

object state Xk and observation Zk are modeled as so-called random

finite sets (RFS), with randomness in set size as well as set element

values (Bar-Shalom and Li, 1995), accommodating phenomena such

as object initiation, clutter and partitioning (spawning). Formally

stated, PHD filtering proceeds as follows:

Prediction :

Dkjk�1ðxÞ ¼ ckjk�1ðxÞ
þ hbkjk�1ðxj�Þ þ pS;kjk�1ð�Þpkjk�1ðxj�Þ;Dk�1jk�1ð�Þi

(4)

Update:

DkjkðxÞ ¼ ð1� pD;kðxÞÞDkjk�1ðxÞ

þ
X
z2Zk

pD;kðxÞgkðzjxÞDkjk�1ðxÞ
CkðzÞ þ hpD;kð�Þgkðzj�Þ;Dkjk�1ð�Þi

(5)

where ckjk�1 denotes the intensity function of newborn objects from

iteration k – 1 to k, bkjk�1 the spawning object transition density,

pS;kjk�1 the object survival probability, pkjk�1 the single-object

transition density, pD;k the object detection probability, gk the
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single-object likelihood, Ck the clutter intensity function, and

hgð�Þ; f ð�Þi �
Ð

f ðnÞgðnÞdn (see e.g. Vo and Ma (2006) for details).

An analytical solution to (4)-(5) is provided by the Gaussian-

mixture PHD (GM-PHD) filter (Vo and Ma, 2006) but it is based

on linear Gaussian assumptions regarding object birth and

dynamics. A more general solution is offered by sequential Monte-

Carlo PHD (SMC-PHD) filtering (Ristic et al., 2010; Vo et al.,

2005; Zajic and Mahler, 2003), which approximates the PHD

with a set of N random particles xn
kjk and corresponding weights

xn
kjk as

DkjkðxÞ �
XN
n¼1

xn
kjkdxn

kjk
ðxÞ (6)

so that the classic particle filtering scheme (Arulampalam et al.,

2002; Doucet et al., 2000; Ristic et al., 2004) can be applied.

2.3 PHD-filtering based neuron tracing
2.3.1 Definition and initialization

The multi-object filtering scheme we propose for neuron tracing de-

fines the object state as an oriented location:

x ¼ ½px; vx� ¼ ½x; y; z; vx; vy; vz� (7)

where px ¼ ½x; y; z� denotes the location and vx ¼ ½vx; vy; vz� the local

orientation of a tubular segment. Filtering starts from a set of N0

seeds (Fig. 1) sampled from a seed pool consisting of the local max-

ima of the tubularity image sðx; y; zÞ computed from the original

image using Hessian-based multiscale line filtering (Sato et al.,

1998) and min–max normalized to ½0; 1�. Local maxima are sorted

in descending order so that seeds with high tubularity (meaning high

confidence in the underlying image structure being a neuron branch)

are processed first. To avoid seeds being selected too close together,

in other words to ensure good spatial coverage of the neuron with

seeds, for each selected seed (while going from top to bottom of the

sorted list) the seeds within a circular neighborhood with radius r0

are ignored in the current round. If, after SMC-PHD filtering

(described next), the seed pool is not exhausted, a new round is

started by selecting a new set of seeds. During filtering, the observa-

tion consists of the location and corresponding tubularity value:

z ¼ ½pz; sz� ¼ ½x; y; z; s� (8)

2.3.2 SMC-PHD algorithm

The proposed method implements neuron tracing by SMC-PHD fil-

tering. It is based on an approximation of DkjkðxÞ in (6) using N ¼ q

Nk particles, where Nk denotes the number of objects to be filtered,

and q the number of particles per object. That is, the state of object i

at iteration k, denoted xk;i, is represented by q random particles xn
kjk

with corresponding weights xn
kjk (Fig. 2A). The multi-object state

transition in the prediction step (4) is a collection of single-object

transitions (Fig. 2B) that are approximated with transitions at the

particle level (Fig. 2C). More specifically, at the initial iteration

k¼0, N0 seeds are selected and q particles are sampled in a circular

neighborhood with radius r0 around each seed location using the

tubularity value for importance sampling to determine the weights,

resulting in the weighted particle set fxn
0j0; x

n
0j0g

qN0

n¼1. The initial local

orientation of each particle, vxn
0j0

, is the unit vector pointing from the

seed location to the particle location pxn
0j0

. Subsequently, the predic-

tion (4) and update (5) steps are executed for iterations

k ¼ 1; 2; 3; . . ., until convergence. The transition and observation

models (described next) allow to incorporate application-specific

knowledge in this process. At iteration k, the set of weighted par-

ticles fxn
k�1jk�1;x

n
k�1jk�1g

qNk�1

n¼1 from iteration k – 1 is used to predict

g new particles for each persistent and spawned object (Fig. 2C). In

the update step (5), a set of observations fzk;jgMk

j¼1 is used to update

the predicted particle weights, followed by estimation of the states

fbxk;igNk

i¼1. For details we refer to the algorithm pseudo codes in the

supplementary information.

2.3.3 Transition model

In the prediction step (4), three types of objects are assumed: new-

born, persisting and spawned objects (Vo et al., 2005; Vo and Ma,

2006). In our algorithm, by design (since we use seeding), newborn

objects are not considered, hence ckjk�1ðxÞ ¼ 0.

Persisting objects in the current iteration correspond directly to

existing objects in the previous iteration. In our algorithm, the

A B C

Fig. 2. PHD filtering using a particle representation. (A) Each object i at iteration k has a state xk ;i that is represented by random particles xn
k jk with corresponding

weights xn
k jk . (B) In the transition from iteration k – 1 to k an object (x0) may disappear (1), persist (xp), or spawn (xs) according to the corresponding transition

functions. Here pS is shorthand notation for pS;k jk�1ðx0Þ, since in practice a constant is used (Table 1). (C) For each particle a prediction xn
k�1jk�1 ! xn

k jk�1 is made

within radius rk according to the transition functions for persistence (p) and spawning (s)

Fig. 1. Method overview. Each multi-object filtering round is initialized with

N0 seeds. If the seed pool is not exhausted by the end of the current round, a

new round is started, and this is repeated until all seeds have been processed
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transition density for predicting persistent object x given object x0 in

the previous iteration, is calculated as

pkjk�1ðxjx0; j; rkÞ ¼
1

~p
e
�ðjpx�px0 j�rkÞ

2

2ðrk=3Þ
2 ejðvx �vx0 Þ

2pI0ðjÞ
(9)

where ~p is a normalization factor such that the sum of pkjk�1 over j
px � px0 j � 2rk is unity, and I0 is the zero-order Bessel function of

the first kind. The first factor corresponds to a radial profile that

peaks at the prediction step size rk. The second factor is a circular

normal distribution (von Mises) parametrized with the unit direc-

tion vector vx0 from the previous iteration and circular variance j.

Here, vx ¼ ðpx � px0 Þ=jpx � px0 j, which connects the predicted loca-

tion px with the location px0 from the previous iteration. Particles

xn
kjk�1;p (Fig. 2C) are drawn using pkjk�1 as importance sampling

function.

A spawned object is a new instance derived (spawned) from an

existing object in the previous iteration. This allows dealing with bi-

furcations during tracing. In our algorithm, the transition density

for predicting a spawned object x given x0 in the previous iteration,

is calculated as

bkjk�1ðxjx0; j; rkÞ ¼
1
~b

e

�ðjpx � px0j � rkÞ2

2ðrk=3Þ2 �

Y1
i¼0

1� ejð�1ivx �vx0 Þ

2pI0ðjÞ

 ! (10)

where ~b is a normalization factor such that the sum of bkjk�1 over j
px � px0 j � 2rk is unity. The first factor has the same form as in (9)

and the second factor is the aggregate of the complementary circular

normal distributions used for spawning objects in positive and nega-

tive direction. An example of the intensity profile of pkjk�1 and

bkjk�1 is shown in Supplementary Figure S1. Particles xn
kjk�1;s (Fig.

2C) are drawn using bkjk�1 as importance sampling function.

2.3.4 Observation model

In the update step (5), a set of observations fzk;jgMk

j¼1 is used to up-

date the predictions from (4). Observations have a corrective role as

they carry information about the neuron centerline locations and

corresponding tubularity values (8). In our algorithm we use

hðpjx0; j; rkÞ ¼
1
~h

e
�ðjp�px0 j�rk Þ

2

2ðrk=3Þ
2 ejðvp �vx0 Þ

2pI0ðjÞ
sðpÞ (11)

as the importance sampling function to obtain the observations,

where ~h is a normalization factor such that the sum of h over

jp� px0 j � 2rk is unity, and vp ¼ ðp� px0 Þ=jp� px0 j. The first two

factors have the same form as in (9) but here j is typically lower to

make the update step more restrictive than the prediction step. The

third factor is the normalized tubularity measure s (Sato et al.,

1998) at location p, which makes the observations correspond pref-

erably to regions with high tubularity, which are indeed more likely

to contain neuron structures.

To obtain the observations at iteration k, for each object i from

the previous iteration a set of particles fpn
i g

qNk�1

n¼1 is drawn from h

using x0 ¼ bxk�1;i (the object state estimate), with particle weight pro-

portional to the tubularity value at that location. All these particles

together are subsequently clustered in an unsupervised manner using

mean-shifting (Cheng, 1995), resulting in a set of clusters fCjgMk

j¼1,

with each cluster Cj having a subset fpn
i;jg
jCj j
n¼1 of the particles. For

each cluster, a representative sample pn̂
i; j is calculated using least-

squares optimization,

bn ¼ arg min
n

X
m2½1;jCj j�

hðpm
i; j; pbxk�1;i

;pn
i;jÞ (12)

where hðp0;p1; p2Þ denotes the squared Euclidean distance from

point p0 to the line segment defined by p1 and p2, calculated as

hðp0;p1;p2Þ¼

jp0�p1j
2 if ðp0�p1Þ � ðp2�p1Þ � 0

jp0�p2j
2 if ðp0�p2Þ � ðp1�p2Þ � 0

jðp2�p1Þ�ðp1�p0Þj
2

jp2�p1j
2

otherwise

8>>>>><>>>>>:
(13)

so that the line segment that best fits the cluster elements deter-

mines the selected location. From this the observation is obtained

as zk;j¼½pn̂
i;j;sðpn̂

i;jÞ�. The process is illustrated in Supplementary

Figure S2.

For the single-object likelihood in (5) we use a Gaussian function

centered at the spatial location of the observation, gkðzjxÞ ¼
exp ð�jpz � pxj

2=2r2
z Þ, giving more importance to predictions closer

to z. The clutter intensity function is defined as an exponential de-

pendency on the observation tubularity value, CkðzÞ ¼ exp ð�KcszÞ,
implying that the clutter increases as the tubularity value goes to

zero. In practice, clutter plays a role in detecting terminal points,

causing tracings with low particle weights (due to their proximity to

regions with low tubularity values) to not be resampled and thus

dropped after the update step.

2.3.5 Implementation details

Algorithms 1 and 2 in the supplementary information provide a

step-by-step overview of our PHD-filtering based neuron tracing

method. For testing purposes the method was implemented in Java

as a plugin for ImageJ (Abr�amoff et al., 2004). The method has sev-

eral parameters for which default parameters are given in Table 1.

In our experience most of them do not require extensive tuning and

for the experiments we used default values. An important aspect of

any SMC-based algorithm is to use a sufficient number of particles

in the approximations. In our experiments we found that values of

10–20 are sufficient for q and g since the objects of interest in our

application (neurons) are approximately 1D structures in 3D space

and therefore are easily covered. Higher values can lead to higher ac-

curacy and precision but at proportionally higher computational

cost. The most important parameters are the numbers of seeds N0

and rounds (Fig. 1) and in the experiments (described next) we have

Table 1. Parameters of the proposed method with their default

values

Parameter Default Description

Kc 30 Clutter intensity function decay

N0 20 Number of seed points per round

pD 0.9 Object detection probability

pS 0.9 Object survival probability

rk 3 voxels Radial estimation step size

q 	10 Number of particles per object

g 	10 Number of predictions per particle

j 2 Circular variance in (9) & (10)

0.5 Circular variance in (11)

In our implementation we used constants for the object detection probabil-

ity pD ¼ pD;k and the object survival probability pS ¼ pS;kjk�1.
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tested the performance of our algorithm for different values of these

parameters.

3 Results

3.1 Neuron datasets
For evaluating the performance of the proposed method for both 2D

and 3D neuron tracing we used three datasets (Fig. 3) of real neuron

images acquired with fluorescence microscopy. Two datasets are 3D

image stacks from the DIADEM challenge (Brown et al., 2011): neo-

cortical layer-1 axons (NCL1A) with 16 image stacks and olfactory

projection fibers (OPF) with 9 image stacks. The third dataset

(HCN) consists of 30 2D images of hippocampal neurons (Steiner

et al., 2002). Together the datasets show a good variety of image

contrast and structural complexity. We refer to the cited papers for

further details about the images.

3.2 Performance measures
The accuracy of the tracings produced by our method was assessed

by comparison with the gold-standard obtained by manual delinea-

tion of the neuron structures (Gillette et al., 2011; Meijering et al.,

2004). To this end we used two categories of evaluation measures.

The first consists of measures summarizing the spatial Euclidean dis-

tances between the nodes of two tracings to be compared: the aver-

age spatial distance (SD), the average substantial spatial distance

(SSD), and the fraction of nodes whose distance is at least the sub-

stantial distance (%SSD). Similar to previous studies using these

measures (Peng et al., 2010) we set the substantial distance to 2 (pix-

els in 2D and voxels in 3D). The second category of evaluation

measures are based on the numbers of true-positive (TP), false-

positive (FP), and false-negative (FN) nodes according to the sub-

stantial distance. From these we compute the recall,

R ¼ TP=ðTPþ FNÞ, and precision, P ¼ TP=ðTPþ FPÞ, summarized

using the F-score, F ¼ 2 P R=ðPþ RÞ. Prior to computing these meas-

ures the tracings (from the method and the gold-standard) were

resampled with an equal step size of 1 pixel using Vaa3D (Peng

et al., 2010).

3.3 Evaluation of method behavior
First we evaluated the behavior of our method as a function of the

number of seeds and rounds. For this experiment we measured P, R

and F for (i) a single round of filtering with different numbers of

seeds and (ii) multiple rounds of filtering using a fixed number of

seeds. Since our algorithm operates probabilistically we averaged

the results of five repetitions of the experiment. The results for the

NCL1A dataset are shown in Figure 4 and for the other datasets in

Supplementary Figure S3. As expected, R and F generally increase,

but P slightly decreases as the number of seeds and rounds increase,

indicating an increase in the number of FP detections. The specific

patterns may differ depending on the image content, but we observe

that as a function of the number of seeds, the increase of R and F

levels off beyond about 40, so we subsequently used this value. As a

Fig. 3. Example images with tracing results of the datasets used in the evaluation. Top row: NCL1A image stacks (volume rendered) showing a network of neocor-

tical layer-1 axons. Middle row: OPF image stacks (volume rendered) showing olfactory projection fibers. Bottom row: HCN images showing hippocampal neu-

rons. The tracings (overlaid) were obtained with our method using 20 seeds and at most 10 rounds (up to 40 for the top row to capture more detail). For

illustration purposes the image intensities are inverted in these visualizations compared to the originals, and the tracings are offset with respect to the neuron

structures for better visual comparison (Color version of this figure is available at Bioinformatics online.)

Fig. 4. Performance of our method as a function of numbers of seeds and

rounds for an example image stack from the NCL1A dataset. Similar trends

were observed for all stacks in the dataset. Left panel: Precision (P), recall (R)

and F-score (F) after one round initialized with different numbers of seeds (N0).

Right panel: The scores after multiple rounds with a fixed number of seeds (N0

¼ 40). Fifth-order polynomial fitting was used to show the approximate F-score

trend (Color version of this figure is available at Bioinformatics online.)
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function of the number of rounds, R and F level off after about 4

rounds, indicating there is no need in practice to run the method ex-

haustively on all possible seed points. This can be explained from

the fact that seed selection proceeds from highest to lowest tubular-

ity value, so that later seeds correspond to less and less valuable

image structures, and the resulting tracings will be dropped due to

low particle weights. Examples of traced neurons for the different

datasets are shown in Figure 3. As can be observed from the ex-

amples in the top row of the figure, images with more fuzzy and

fragmented structures may require more rounds to capture more de-

tail. Alternatively, a better tubularity filter may be needed.

3.4 Comparison with other methods
Next we compared the performance of our method (PHD) with sev-

eral alterative methods, namely all-path pruning (APP2) (Xiao and

Peng, 2013), NeuroGPS-Tree (GPS) (Quan et al., 2016), minimum

spanning tree (MST) tracing as used in the BigNeuron project (Peng

et al., 2015), and Neural Circuit Tracer (NCT) (Chothani et al.,

2011). For each of these methods the scores were optimized by try-

ing all possible parameter values on a grid. The results for the

NCL1A dataset are shown in Figure 5 and for the other datasets in

Supplementary Figures S4 and S5. We observe that our method (re-

sults indicated in red) performs comparably or even better than the

state-of-the-art methods. This suggests there may indeed be an ad-

vantage in using probabilistic approaches such as the one proposed

in this paper. We note that NCT (results indicated in Figure 5),

while performing superiorly in most cases, required significant user

interaction and manual correction to enable export of the tracings

to the standard SWC file format used in our evaluations. Thus the

results of this method include a high level of expert input and could

serve as a reference. All other methods including our own were fully

automatic after parameter selection.

To further demonstrate the advantage of our method over the

others in challenging situations we also studied the case when neu-

ron fibers meet, run closely parallel to each other for some distance,

and then diverge again. In order to analyze the behavior of the dif-

ferent methods in a controlled manner, with increasing distance be-

tween the fibers, we synthesized images with two fibers of similar

intensity and scale. The results, shown in Supplementary Figure S6,

demonstrate that our PHD method, similar to GPS, yields more

faithful tracings than APP2 and MST. NCT was not included in

these experiments for reasons mentioned above. Not surprisingly,

all methods break down when the fibers overlap completely. We

also created an even more challenging case, with three fibers of dif-

ferent intensity and scale. The results, shown in Supplementary

Figure S7, illustrate that our method outperforms even the best

alternatives.

In terms of computational efficiency it turned out difficult to dir-

ectly compare the methods. This was mainly due to the use of differ-

ent programming languages (Java versus Cþþ) and the varying

efficiencies of underlying software libraries used on the different

operating systems we considered (Linux Ubuntu and Mac OS).

Moreover we observed that the absolute as well as the relative exe-

cution times of the different methods varied widely depending on

the image content. Generally we found APP2 to be the fastest

method (on the order of seconds per image), and PHD up to about

one order of magnitude slower, while GPS and MST were either

slower or faster than PHD depending on the configuration. NCT is

ignored here for mentioned reasons. From these observations we

conclude that the efficiency of our method is comparable to the state

of the art.

4 Conclusions

We have presented a new method for tracing the branch centerlines

of neurons based on Bayesian multi-object tracking using probabil-

ity hypothesis density (PHD) filtering. The method is able to simul-

taneously trace out multiple neuron structures in a probabilistic

fashion so that the same neuron segments may be covered multiple

times and are thus supported by more evidence. PHD filtering solves

the computational problems of direct Bayesian multi-object tracking

and allows convenient handling of bifurcations and terminations

during the tracing process by modeling of spawned objects and ob-

servation clutter. The results of experiments on various fluorescence

microscopy image datasets of real neurons showed that the proposed

method performs comparably or better than alternative state-of-the-

art neuron tracing methods.

The current version of the proposed method is initialized with

seed points sampled from the local maxima (from highest to lowest)

of the tubularity filter response. This is a rather rudimentary ap-

proach that may sometimes result in missed branches (false nega-

tives). Ideally, seeds should be strategically distributed so that they

cover as many branches of the neuron structure as possible while

avoiding background artifacts, and this is an important topic for fur-

ther research. In addition, the current mechanism responsible for

trace termination, based on the clutter term of the PHD filter, relies

strongly on the tubularity score and thus is sensitive to local inter-

ruptions in neuron staining. This could be remedied by using a better

tubularity filter and/or refining the clutter model. Thus, in future

work, we will study whether further improvements could be

achieved using different transition and observations models. We

also aim to extend the method to perform local branch radius esti-

mation during tracing in order to obtain complete neuron

reconstructions.
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Fig. 5. Performance comparison of our method with several other methods

on the NCL1A dataset. For each method and each measure, the plotted box

indicates the 25-75 percentile, the horizontal bar indicates the median score,

and the whiskers and outliers are drawn using the default settings of R (Color

version of this figure is available at Bioinformatics online.)
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