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Abstract

In order to accomplish various missions, autonomous underwater vehicles need to be capable of
estimating their position within the environment. This is a prerequisite of a successful mission
since further tasks that need to be achieved strongly rely on navigation information as a source
of valuable information. Much has been said about navigation underwater, yet the research has
not reached the level of having as equally precise solution for navigation as the one available
above the water surface.

This thesis is a study on application of an algorithm that would accomplish the localisation
of the Ocean Systems Lab’s Nessie underwater vehicle using measurements from a number of
sensors mounted on it. Well known Extended Kalman Filter (EKF) algorithm approach was
suggested as a solution for robot self-localisation. Chosen method uses measurements from the
set of sensors installed on the vehicle. Standard Kalman Filtering routine involves two stages:
prediction and correction. Prediction model is derived from the mathematical model of the
vehicle dynamics. Based on the laws of kinematics, prediction model calculates the next vehicle
dynamic state. Five degrees of freedom (d.o.f.) constant-speed model for motion of the rigid
body was proposed for this purpose. Measurements from different sensors are fused together to
make the observations. Observations are responsible for the correction stage. In other words,
observations have been combined together with the process model in order to make a quality
estimate of the current location of the robot within the environment.

Prediction model applies the laws of physics in order to make a suitable role model of robot
movement. Inspiration for the solution comes from previous works on EKF-based localisation.
Practical application of the EKF implies management of the observations in terms of time
and sensor type. Additional practical issue that was addressed in the thesis is the choice of
heading sensor and quality of obtained heading as an important ingredient of the navigation.
Implementation of Unscented Kalman Filter (UKF) was investigated as potential improvement
in working with nonlinearities. Finally, the absolute position observations tend to be quite
noisy, nevertheless very important navigation measurements. EKF was demonstrated as a tool
for sensor fusion and simultaneous filtering of the position measurements.

In addition, the work gives a summary of the underwater localisation methods and ca-
pabilities. Theoretical background on nonlinear filtering was investigated in order to justify
the reasons for choosing EKF. Finally, experiments with recorded sensor data and some real
missions have been carried out. Their results have been presented as a part of navigation per-
formance test and analysis.The emphasis is on the engineering of the solution, improving the
navigation and finding the way to overcome known deficiencies, mostly due to nonlinearities,
volatile heading measurement and measurement imprecisions. Thesis is intended to report pros
and cons of a practical piece of work, implemented in C++ within the Robot Operating System



(ROS) framework and Nessie software and hardware platform - where a scientific concept was
adopted to solve the real task.

If one does not know to which port one is sailing, no wind is favourable.

Seneca, Roman philosopher, mid-1st century AD
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Chapter 1

Introduction

1.1 Why underwater?

Manhood has managed to conquer variety of environments. At some point, humans could walk

on the moon, send expeditions to cold or remote areas in different corners of the planet. Seabed

embraces the largest part of the Earth’s surface. Deep ocean world is a harsh environment with

many discoveries yet to be revealed. Robots have potential to help in achieving those discoveries.

1.2 Localization - Where the Robot Is?

One of the important features of the autonomous underwater vehicle is being capable of lo-

calising itself within an environment - to estimate its metric position and orientation in three

dimensional space. Knowing where it actually is enables further tasks of an autonomous robot

such as path tracking or various manipulation tasks. Therefore, it has the same role as parts

of human brain devoted to the navigation.

The main topic of the thesis is localisation of an autonomous underwater vehicle. Localisa-

tion essentially deals with the problem of estimating the position and orientation of the vehicle

with respect to the defined reference system. Simply, answering where the robot is. Basic

instrument in accomplishing the localisation is the sensor set. Sensory system is used to supply

the localisation algorithm with the feedback on vehicle movement, control or state of the sur-

rounding environment and its relation with the vehicle. One of the difficulties when interpreting

the sensory information is the very nature of the measurement - noisy and uncertain. Majority

of the measurements obtained from sensors are based on evaluation of the distance in water

environment. Many conditions can influence the performance of the localisation, including the

1



Chapter 1: Introduction 2

Figure 1.1: Nessie AUV design.

very beginning: whether we can make some estimate on the initial position or not [34].

1.3 Autonomous underwater vehicle (AUV)

Different sorts of underwater robots have been developed throughout recent decades of re-

search. They all have various performance capabilities, costs, accuracy, power consumption

characteristics. The algorithm presented in this thesis was applied on Ocean System Lab’s

(http://osl.eps.hw.ac.uk/) torpedo-shaped Nessie vehicle (figure 1.1) that belongs to special-

task AUV category combining together FOG-based Inertial Navigation System, DVL and LBL

sensoring for aiding navigation (Chapter 4). The architecture of the vehicle and its system

capabilities are flexible on number and types of sensors employed leaving space for additional

equipment to assist in missions, or improve the current navigation with already existing devices,

such as forward or downward looking cameras.

1.4 Contribution of the thesis

Thesis is reporting the application of Extended Kalman Filter for localisation of the above

mentioned Nessie AUV in an unstructured environment. The concept of sensor fusion was

explained. The main contribution is the implementation of an EKF estimator adopted to

work on a real underwater vehicle with real-time signals received from sensors. Furthermore,

design of the estimator requires establishing a prediction model. Five d.o.f. model of the

vehicle dynamics was introduced to take the role of the prediction. Apart from the algorithm-

level investigation, following work examines the problem from the perspective of engineering a

successful AUV navigation in general. The issue of accurate heading and the outliers in absolute

http://osl.eps.hw.ac.uk/


3 1.5 Thesis outline

position measurement was analysed. Unscented Kalman Filter was implemented as an attempt

to improve the performance and compensate for the shortcomings of the EKF. Eventually,

simulations and some real scenarios were carried out resulting in analysis of the performance,

advantages and disadvantages of the method.

1.5 Thesis outline

The first chapter § 2 introduces the task of robot navigation. Chapter § 3 explores the possible

methods to navigate the robot and gives an overview of the literature that covers AUV navi-

gation. A digression on theory of nonlinear filtering and Kalman Filtering algorithms such as

was EKF and UKF was included in the chapter. Since the investigated navigation task relies

on sensory data, a short overview on vehicle sensors is given in Chapter § 4. Methodology de-

scribing the details of the implementation was shown in Chapter § 5. Finally, results obtained

from the real missions were given in § 6, with concluding remarks placed in last section § 7.



Chapter 2

Problem Definition

Robots are designed to help humans by replacing them or helping them in accomplishing certain

task. This observation stands for the underwater robots in their mission of exploring vast

environment such as water. It is essential for successful application of an underwater vehicle

that the vehicle can accurately estimate its own position in the environment. It autonomously

makes decisions that are influenced by position information. Moreover, usability and quality of

the data corresponds to the precision of the localisation.

2.1 Robot localization

With the discovery and the development of Global Positioning System (GPS), the issue of the

localisation of all robots operating on land or in the air was solved with the considerably cheap

and reliable system. However, designers of those machines that operate underwater remain

being in quest for the localization system of similar performance that would work in vast and

unique environment such as water. Due to absorption of radio frequencies in the salty water,

GPS signal is not available in the sea depths, and radio-wave-based localization which serves as

standard “above the surface” cannot be used. As a consequence, various methods are developed

to establish the localization underwater using all potentially useful sensor information.

The improvements of inertial instruments’ performance enabled their usage in localization

for calculating the odometry. Different types of sensors are typically used and the role of

mathematical algorithm such as Kalman filter or its variations in this application would be

to combine together sensor measurements from all the different sources and make an optimal

estimate of the vehicle state: its position and orientation.

The aim of the project is to implement and evaluate navigation algorithm for an underwater

vehicle. Navigation, as introduced in literature, implies two capabilities [16]:

4



5 2.1 Robot localization

• localization - accurate determination of the vehicle position and velocity with respect to

a known reference point

• planning and the execution of the movements between locations

The work presented in the thesis will focus on the first capability. Moreover, the first capability

is a necessary step in carrying out the second capability correctly. To accomplish the task, sensor

information is integrated in calculations. The purpose is to calculate the vehicle position in

every moment as accurately as possible. Mathematical tool that will integrate the measurements

and establish the final estimate is well known Kalman filter [26] algorithm. More details about

Kalman filter in Sections § refsec:kf and § refsec:ekf.

It is important to mention that localization underwater tends to be a different challenge

compared with the localization on land or in the air. Namely, the usage of GPS signal (absolute

position information) is limited since it is available only on water surface. Therefore, speed and

heading information obtained from inertial navigation system (INS) sensors is used together

with the mathematical model of the motion to calculate the position, orientation and velocity via

dead reckoning. Such strategy eventually leads to progressive error since measurement errors

are integrated each time. To overcome this, GPS information which gives absolute position

is used to make corrections. It updates the position information whenever available - either

directly, if the vehicle is on the surface or using long baseline acoustic positioning (LBL).

Another obstacle in managing localization is the water environment itself. Usage of sensors

based on light transmission such as camera, is limited because environment is such that it

deforms or decreases the signal. A useful tool to determine the distance or the speed in water

is sound, a mechanical wave that does not severely depend on light conditions and moves faster

in water.

Issues: Localisation algorithm starts with the initial estimate of the location and contin-

ues making estimation by processing available information obtained from measurements. How

the information from several sensors can be combined together used to estimate vehicle posi-

tion? Measurements are of various kinds, therefore, one of the problems to solve on the way

to having a successful localisation is the integration of those different sensors together into one

unique representation of the environment [31]. Such problem is recognized as multi - sensor

fusion. It is certainly one of the crucial tasks to solve in navigation of an underwater vehicle.

Localisation algorithm is intended to take the input from different sensors and calculate the

best possible estimate of the vehicle position.

Having measurements is a necessity, but having noisy or even false measurements or vehicle

states is a problem to deal with. Kalman filter is intended to treat the signal as being a random

variable or a function of a random variable with Gaussian distribution. Standard deviation of

random variable manifests its uncertainty which compensates for the role of the noisy state or
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measurement.

Navigation of underwater robot is vital part of inspection and mapping tasks. Large sub-

marines use precise measurements taken from high-priced sensory devices. Future seems to

involve more and more usage of small, less expensive systems, that tend to fuse together infor-

mation from variety of inexpensive, less accurate sensors in order to improve the quality of the

navigation.



Chapter 3

Navigation capabilities of AUVs

This chapter gives an overview of the main navigation elements for an underwater vehicle.

Methods and existing algorithms for underwater vehicle localisation have been summarized.

Section § 3.11 gives an overview of the literature and related work reporting various AUV

navigation methods.

Carrying out underwater vehicle localisation implies using concepts such as vehicle state

within some navigation strategy framework. Those two concepts will serve as a starting point

for reviewing different methods. It is possible to refer to the definition of the vehicle state and

its features when categorizing navigation solutions. On the other hand, navigation solutions

can be essentially based on different ideas (strategies). In addition, we could treat any kind of

localisation as absolute or relative, depending on which reference system we use when obtaining

measurements. Absolute localisation takes environment point as reference system while relative

considers the vehicle itself to be the reference. Most of the techniques surveyed here deal with

absolute localisation.

3.1 State estimation

Vehicle navigation state describes its position within the environment. The state is a vector

that contains variables relevant for localizing the vehicle. State interpretation would further

categorize navigation methods on those that treat state as stochastic: linear or nonlinear, or

deterministic [29]. Thus, navigation state estimators can be based on stochastic state estimators

or deterministic state observers [29].

7



Chapter 3: Navigation capabilities of AUVs 8

3.2 Stochastic state estimators

The name of stochastic state estimation methods suggests that states are treated as ultimately

having feature of randomness built-in. That means being or having a random variable, or

grouping random values in certain manner. It does not seem to be a wrong conclusion after

recognizing that state of a system, is seldom known precisely. It is the essential nature of the

process or the instrument used for measuring or the estimation algorithm itself that it fails at

submitting utterly accurate data all the time. We could say that many natural phenomena

are random with certain distribution of the randomness. Random variable distributions are

conveniently treated as Gaussians. Statistically speaking, estimation is a rule used to calculate

an estimate of a variable of interest using the observed data. As it is the case with random

variables, we can say that certain state has an expected value, and that such “randomness”

can be expressed with the distribution formula, resulting in descriptor values such as mean and

standard deviation that fully describe the distribution in particular case of Gaussian, for in-

stance. This approach has been applied often in underwater navigation. Most notable stochastic

state estimator is Kalman filter (Section § 3.3). Kalman filter is an unbiased, optimal estima-

tor [20,26]. KF works through iterations by employing the process model for making the state

prediction and the observations for doing the state correction (Figure 3.1). Kalman filter and

the Extended Kalman Filter (EKF) treat random variable as having a Gaussian distribution.

Sections § 3.3 and § 3.11.1 provide more details on Kalman filtering. A number of works report

on usage of different variations of Kalman filters for state estimation.

3.2.1 Linear stochastic state estimators

Localisation of a robot naturally requires sensor measurements. Methodologies that work with

state estimation employ measurements in terms of adding them as supplementary information

to the mathematical model of object movement. Linear kinematic models are not suitable for

describing the dynamics of the vehicle, therefore most of the solutions implement nonlinear

stochastic state estimation.

3.2.2 Nonlinear stochastic state estimators

The necessity of linearising the plant and observation models to comply with linear Kalman

Filter is the basis of EKF derivation. Various works report the usage of other interesting

nonlinear estimators such as Unscented Kalman Filters (UKF). Methods that are based on

random sampling (“Monte Carlo methods”), for instance Particle Filters (PF), are also used

for localization underwater, which brings us back to the concept of stochastic value, but from

the perspective of sampling those stochastic values. The work presented in the thesis focuses
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on nonlinear stochastic state estimators such as EKF and UKF. Nonlinearity is a common

phenomenon. Real world consists of various nonlinear systems. Practical situations often

demand the usage of approximations that eventually lead to linearisation. The solution obtained

this way is claimed to be sub-optimal - not perfectly tuned, but, indeed, useful. The problem

is to consecutively make an estimation of the state of a dynamic system using a sequence of

noisy measurements [35]. State-space approach turns out to be suitable choice when dealing

with nonlinearity and estimating (filtering) values of the group of variables. Number of filters

have been designed to deal with the phenomenon. Depending on the methodology, they could

be roughly categorized as [35]:

• those that use analytic approximations (e.g. EKF)

• those that use numerical approximations

• those that use multiple models

• those that use sampling (e.g. UKF)

Since approximations eventually lead to linearising the system, a short overview of linear

Kalman Filter (KF) is given in order to make an introduction on something that will be the

basis for methods presented.

3.3 Kalman Filter (KF)

KF [26] is a well known mathematical tool that offers solution to linear-quadratic problem in

form of an estimator [20,35]. Such linear estimator is optimal in terms of any quadratic function

of the estimation error [20]. It is based on an iterative and recursive process. In addition, it

is well suited framework for blending together different sensor measurements. Mathematically

speaking - world consists of variety of systems that change their state (x(k)) in time. Guided by

this foundation, science has established a concept of linear dynamic system model (Table 3.1)

consisted of process model and measurement model. Process model (Table 3.1) is perturbed by

Gaussian white noise (n). It emulates the behaviour of a phenomenon (change of the states)

together with its hereditary randomness. Measurement model (Table 3.1) emulates observations

of the system state. Observations are expressed as linear functions of state variables corrupted

with Gaussian white measurement noise (m), similarly as the process model itself. System can

receive control inputs (u(k)). Covariances of the process (n) and measurement noise (m), are

Q and R respectfully. Covariances are important components of filtering algorithm 1. They

can be interpreted as uncertainties in particular prediction or measurement.
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Table 3.1: Overview of the state-system models.

System models overview
x - system state vector, u - control input, n - process noise, m - measurement noise

Linear System Model Nonlinear System Model
process model:

x(k) = Ax(k − 1) +Bu(k) + n(k − 1) x(k) = f(x(k − 1),u(k),n(k − 1))

measurement model:

z(k) = Hx(k) +m(k) z(k) = h(x(k),m(k))

A matrix associates (x(k − 1)) and (x(k)) f() nonlinear process function
B matrix associates (u(k − 1)) and (x(k)) h() nonlinear measurement function
H matrix associates (x(k)) and (z(k))

E{n(k)} = E{m(k)} = 0
E{n(k)n(j)T } = δkjQ, E{m(k)m(j)T } = δkjR

Discrete Kalman Filter is an optimal unbiased minimum mean squared error estimator. It is

a calculation process that works recursively, passing iterations as shown in diagram 3.1. Kalman

filter uses three basic steps: prediction, measurement and update. One iteration uses process

equation, next one proceeds further using prediction result within the observation equation.

Recursion continues each time referring to previous filter output.

Assumptions that KF uses:

• distribution of a random variable is assumed to be Gaussian, therefore mean and variance

can fully describe it

• linear transform of a Gaussian distribution gives another Gaussian distribution

In spirit of that, noise vectors (n,m) and thus linearly derived state and observation vectors

(x, z) are Gaussian. Another assumption is that noise vectors n, m have zero mean values

(“white Gaussian”) and that their elements are not correlated, resulting in diagonal matrices

Q and R (Table 3.1).

KF can be summarized with the set of formulas given in Algorithm 1. The aim of the

equations is to recursively obtain the estimate of the state vector x̂ and the uncertainty of such

estimate. Uncertainty is described as state variance P (k) = E{(x(k) − x̂(k))(x(k)− x̂(k))T }.

KF defines states as collection of elements with Gaussian distribution, thus mean value is

used as an estimate and variance as a measure of how far the values are spread out around

mean. Notation follows the one from the Table 3.1. x̂(k | l) is a state estimate at the

time k using observations obtained until time moment m. It is a recursive estimator since
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Time Update

("Predict")

Measurement Update

("Correct")

Figure 3.1: Filtering process.

every estimation relies on previous state estimation and current observation (measurement).

Although history of previous observations is not directly used, it is still incorporated in previous

state estimation. Previous state estimation is used in current state estimate due to recursive

nature of the algorithm. Transformation uncertainty Q is updated simultaneously with the

state. Innovation ν presents difference between the real observation and predicted observation.

Both innovation and its covariance matrix S are included in calculation of Kalman gain K.

Kalman gain does the final state estimate correction 1 influenced by recent observation and

makes the uncertainty optimal with respect to quadratic estimation error criteria. Although

Algorithm 1 The Discrete Kalman Filter

Require: E{x(0)} = x(0) = x̂(0) {initialize state}
Require: P (0) = δjkP0 {initialize covariance}
loop
k ⇐ k + 1
x̂(k | k − 1) = Ax̂(k − 1) +Bu(k) {state prediction}
P (k | k − 1) = AP (k − 1)AT +Q {state prediction uncertainty}
ν = z(k)−Hx̂(k | k − 1) {innovation}
S = HP (k | k − 1)HT +R {innovation uncertainty}
K = P (k | k − 1)HTS−1 {“Kalman gain”}
x̂(k) = x̂(k | k − 1) +Kν {state correction}
P (k) = (I −KH)P (k | k − 1) {state correction uncertainty}
return x̂(k),P (k)

end loop

essentially intended for dealing with linear system, KF formulas are be important starting

point in understanding nonlinear filtering accomplished with Extended Kalman Filter (EKF)

or Unscented Kalman Filter (UKF).
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3.4 Deterministic state estimators

Deterministic state estimators refer to non-stochastic system (plant, process) and observation

(measurement) model. Stochastic means that the input and output can manifest in some

random behaviour. Concept of deterministic state does not imply any uncertainty. However

the estimation, apart from being precise and accurate, can be characterized with its stability.

Estimation is exact (no randomisation of the variables) and estimator should be asymptotically

stable [28]. Stability is defined using different mathematical criteria [28]. In this case, navigation

elements such as speed or position or even full-state vector are an output of some defined

transfer function. In order to know the transfer function, an estimator of the nonlinear transfer

function model is used. Such approach utilizes the exact knowledge of nonlinear dynamics of

the vehicle. Essentially, estimating deterministic state implies passing the input data through

a certain transfer function so that the outputs are localisation related values. Transfer function

is defined using known formulas of the transfer function and parameters which are estimated

by giving particular input and observing the corresponding output of the system in order to

recognize its behaviour. Being a completely different concept, in terms of methodology they

are not the focus of the thesis.

3.5 Strategy

Now that the state vector is revealed as a storage for describing the vehicle location, finding

a way to filter that state vector - stochastic or deterministic, linear or nonlinear, can employ

different approaches. At this level, we can talk about the strategy - general approach, an idea.

The primary navigation system in most of the applications, including underwater navigation,

is Inertial Navigation System (INS) (Section § 4.1). Since such system accumulates noisy data,

it introduces the drift errors that need to be occasionally corrected inside the navigation algo-

rithm. Various ways of correcting those errors were developed. Most widely known “correction

tool” is the incorporation of an absolute position measurement. Numerous literature that con-

siders integrating occasional GPS or LBL measurement within the stochastic state estimation

algorithm is presented in Section 3.11. Oceanographic community typically uses three different

strategies to handle the absolute positioning underwater [40]: (1) transponder networks on the

seafloor (long baseline, LBL), (2) ship-AUV communication (short baseline), and (3) sensors

mounted on the underwater vehicle that measure range and inertial motion. They can be com-

bined together depending on the idea, purpose or conditions. Each of the strategies is different

in terms of accuracy, costs, complexity [12] or types of sensors used. Section § 4 gives more

insight into performance and categorization of each inertial sensor device used for underwater

vehicle navigation. Naturally, most of the conventional methods rely on acoustic waves used
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for measuring the distance. Nevertheless, visual information is used, especially in transparent

or structured environment [5]. Navigation can be combined with simultaneous localization and

mapping approach (SLAM, Section § 3.8), or can be terrain aided (Section § 3.7) [29]. Al-

though not common for many applications, visual information recorded by the camera or a pair

of cameras can be used to aid navigation (reduce the drift) [2, 13]. If the localization involves

control of the vehicle movement coupled with localisation and environment information, then it

is addressed as active localisation. On top of already mentioned methods, some novel strategies

in which vehicles communicate among themselves, such as cooperation for navigation (Section

§ 3.9), are explored [2]. Following chapter gives an overview of the mentioned strategies.

3.6 Acoustic-based localization techniques

In the absence of possibility to transmit radio waves, acoustic communication emerges as solu-

tion for communication underwater. Considering that the electromagnetic waves are absorbed

and the propagation of light is limited, positioning cannot rely on GPS signal, laser scanners,

visually aided navigation, or radio communication. Therefore, state of the art in absolute po-

sitioning of the robot underwater implies triangulation using distances from navigation buoys

positioned at the known locations (Figure 3.2(d)). Alternative solution is to surface back in

order to update the position using GPS.

Underwater acoustic positioning system is the main tool used to track underwater vehicles.

Reason for relying on acoustics is the nature of the water environment:resistant to radio waves,

leaving out mechanical acoustic disturbance as the only mean of communication. Three classes

of underwater acoustic positioning systems are used (Figure 3.2): Long Baseline (LBL), Ultra

Short Baseline Systems (USBL), Short Baseline Systems (SBL) and GPS intelligent buoys

(GIB).

LBL systems (figure 3.2(a)) use a network of two or more sea-floor mounted (anchored)

baseline transponders to reference the navigation. Such system is considered to be accurate,

generally with accuracy better that 1 meter - usually around few centimetres [22]. However,

communication-wise, such system is convenient for small number of vehicles, since one vehicle

can query the network each time [2]. Hence, having a large number of vehicles can cause delays

in update. Elapsed time between moment of sending the query and receiving the response is

used to estimate the time-of-flight (tflight) of the wave and eventually the distance (d) between

beacon and the vehicle, considering that the speed of the sound (c) is known and the essential

relation c = d
tflight

is used for calculation. By using methods such as triangulation, these

distances can be used to compute the AUV’s absolute position. LBL systems can be long-range

or short-range. Long-range systems use 12 kHz frequencies for communication range of 10 km
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of distance with the error varying from 1 up to 10 m [2, 41]. Short-range systems use 300 kHz

frequencies and operate within the range of 100 m with sub-centimetre precision [2, 41].

SBL systems (figure 3.2(c)) do not require sea-floor mounted transponders. Instead SBL

system uses a vessel equipped with high-frequency directional emitter in order to accurately

determine the AUV position with respect to the vessel [30]. Disadvantage of such system

is the need for providing a vessel and the distance limits since the range between the ship

and the AUV has to be short. Moreover, SBL accuracy improves with transducer spacing

(possibility of longer baseline). Similarly, the range measurements are used to triangulate

the position. Transducer sends a signal, transponder located on the vehicle responds yielding

distance information. AUV’s location is determined with respect to transducers’ location.

USBL systems (figure 3.2(b)) uses similar beacons as LBL system. Difference is that

vehicle has transceiver with several receiving elements positioned close to each other on a

known distance so that the reply from beacons is detected by all of them. It is possible to

calculate the phase difference between received signals this way which is enough to determine

the bearing to the beacon. If the distance information is combined together with bearing, then

the absolute position of the vehicle can be estimated just by considering the response of only

one beacon.

GIB systems (figure 3.2(d)) consist of floating buoys supplied by GPS signal carrying

transducers. Vehicle has a transponder that replies to transducer query with acoustic signal,

enabling buoys to register the time-of-flight. Such concept communicates opposite way from

the one accomplished in standard LBL.

Common feature for all the mentioned systems is that the position is inferred from the

acoustic feedback of transponders so that the vehicle is capable of locating itself with respect

to transponders. Outliers and noise are

3.7 Terrain-aided navigation

Terrain-aided navigation can be used to determine the vehicle position using topographic, mag-

netic or gravitational data [29]. Terrain-aided navigation can rely on the map of the sea bottom,

its elevation or some particular landmarks that are detected to fix the vehicle position. In such

circumstances, it is possible to define the map first and try to navigate with respect to that

map (map known a-priori) or manage the mapping and navigation simultaneously using sensor

data to build the map from the scratch, step by step. Disadvantage of terrain based methods

lies in fact that they depend on precision of the map of the floor and ability of the vehicle

to sense the depth or image the sea floor. In most of navigation scenarios, a-priori maps are

not available [29]. The essential sensor for terrain aided navigation is sonar that measures the
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Figure 3.2: Different variants of LBL: A - transponder, B - transducer.

distance (“time-of-flight”). However it is possible to use the optical sensor devices, for instance

cameras, and process the visual information. Range of optical sensors is much shorter, they

usually require structured environment, fairly good visibility within the water and the optical

information cannot spread as freely and as far as the acoustic information does. However, its

nature of information is different, richer with different types of data, including the raw position

data.

3.8 SLAM

SLAM concentrates on establishing an autonomous navigation algorithm that would be envi-

ronment based. Therefore, it is reducing the need for additional infrastructure and using the

spatial information from environment to bound the position error. Idea of the concept called

SLAM is to localize the robot with respect to environment landmarks [37]. To accomplish that,

two challenging tasks have to be solved: extracting the features and finding a way to mea-

sure correspondence between measurement and the feature. Literature offers some solutions to

SLAM based approach. Brief overview of some of the methods is given in Section § 3.11.
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3.9 Cooperation for navigation

Advancement in acoustic modems has made it possible to establish more reliable communication

and develop communication technologies that engage data from more than one vehicle [2, 15].

Idea of involving number of vehicles in exploration is to consider sensor and state information

sent from the other vehicles. Advantage of this approach is reduction in amount of sensor

equipment, for instance LBL transponders or bathymetry sonars. However, more vehicles need

to be deployed.

3.10 Active localisation

Active localisation integrates together control of the robot motion and localisation algorithm.

Active refers to vehicle “activity”, mobility or movement since these strategies sense the envi-

ronment and combine together localisation with control so that the quality of the localisation

is improved. Idea is to guide the motion of the vehicle in order to make it more convenient for

the localisation algorithm to work out the tracking [33].

3.11 Related work on AUV navigation

Following paragraphs summarize the documented ways to process the sensor information in

order to be able to estimate the position within the environment.

In existing survey on underwater vehicle navigation, Kingsey [29] gives a summary presenting

the methods used for navigation. As introduced in [29], current vehicle position is referred as

navigation state - a vector whose elements express where the vehicle is and how it is oriented

in space with respect to some reference. Localization simply means finding a way to estimate

navigation state vector. Naturally, sensors are providing the data for the estimation.

The simplest approach would be dead reckoning - to take the raw sensor measurements

and use them directly or within a simple mathematical model that describes the vehicle dy-

namics. Instead, many techniques presented in literature utilize sensor data as supplementary

information together with the information from the kinematic model.

Underwater navigation is using several instrumentation methods to carry out the robot

localization in the sea [40]. These include transponder networks placed on the bottom of

the sea, tracking systems between the ship and the underwater vehicle, and sensory devices

that measure range and dynamics mounted on the vehicle itself. Each of the methods has

its advantages and disadvantages. Transponder network gives accurate position information,

however using it requires installing and calibrating additional equipment [12].
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3.11.1 Kalman filtering localisation

Some past works have already dealt with the issue of managing robot localization using Kalman

filtering. Master thesis of Negneborn [31] gives a useful overview of the theoretical knowledge

in field of probability and estimation. Thesis also surveys the utilization of Kalman filtering

for localizing vehicles in general. Emphasis is on application in robotics. Several experiments

have been reported in the thesis with a detailed discussion. This work is a good starting point

in learning and understanding the problem of localization on physical robots in general and, in

particular, usage of Kalman filtering for that purpose.

Blain et al. [3] study the application of Kalman filter in navigation of an underwater vehicle

used for water dam inspection focusing on merging position orientation and velocity informa-

tion. This algorithm uses acoustic positioning sensor together with the integration the DVL

sensor (Chapter § 4) measured velocities [3] to estimate the position. Apart from reporting

performance of sensor-fusion in real application, several issues have been pointed out and dealt

with in their work, such as managing asynchronous information that arrives from sensors. It is

reported that Kalman filter output could be corrupted in situations when observations (sensor

measurements) are subject to interruption or periodic stopping. Due to the fact that not all

the sensors can be always available, it is usually necessary to be capable of adding or removing

sensor observations from the system without changing the navigation algorithm.

Asynchronous data delivery in this particular case means that the DVL sensor (Chapter

§ 4) provides data with higher rate [3]. Such obstacle was solved by switching to estimation

procedure so that it is suitable for that particular sensor measurement scenario. This simply

means that if the acoustic sensor and DVL sensor asynchronously provide new measurements,

Kalman filtering is used to carry out the fusion by doing filter switching process. Each sensor

has a filter process attached to it and the sensor itself defines which filter becomes active for the

actual measurements. Otherwise, pure DVL velocity measurement is just integrated to update

the position, as dynamic model would suggest. Blain also analyses delays in absolute position

measurement and validity of absolute position data if they are delayed. This effect evident

in case of acoustic waves, where the real time of the measurement is current measurement

time minus the time it took for the acoustic signal to arrive. It is especially visible in cases

when acoustic signal moves across a longer distance. This causes a delay in data arrival. To

overcome this, position estimate between two acoustic measurements is memorized. Position

is meanwhile normally updated by integrating the DVL data that happen more frequently. To

compensate for the time it took for the acoustic signal to arrive, timestamp of the moment when

the data was produced was estimated and memorized together with the current position at the

timestamp. The procedure consists of two stages: at first, a new position estimate is made

using the recieved acoustic position data to update the position at the timestamp. Finally,
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the correction is applied on the updated position by integrating velocities that happened in

meanwhile - from the timestamp till the actual time. This serves as the correction of the

position estimate error influenced by significant time of flight of the signal.

Drolet et al. [8] introduce a flexible localization strategy based on sensor fusion and usage

of several Kalman filters arranged together in a bank. Each filter is reduced to express a simple

kinetic equation. In addition, each filter processes one state - works in one “dimension”. Idea

is to integrate together sensor measurements that arrive at different time moments from differ-

ent sensors. Method takes asynchronous information from sensors, manages a filter switching

process so that the most recent data is used to update those filters that can be updated with

such measurement [8]. Such sensor fusion strategy is adaptable in terms of number of sensors

so that the best is taken out from the available input data, more robust to data loss. Moreover,

asynchronous inputs are allowed.

Di Massa et al. report usage of Kalman filter framework for slightly different concept

of navigation that takes surrounding terrain as reference for estimating the position of the

sonar (“terrain-relative navigation”), [6]. In their work, sonar image is matched to the map

using mean absolute difference (MAD) as the matching criterion. Matching map location is

considered as the measurement of the vehicle position [6]. Matching process is not entirely

transparent - there are always several candidates eligible to be candidate for best matching.

Thus several matchings are selected and weighted depending on how much they relate to the

terrain images. Weights correspond to uncertainties in estimation theory. Quality of similarity

is used to weight each measurement. Solution consists of having resulting best estimate of

location [6]. Information from selected matches is combined to make the best estimate. The

role of Kalman filter framework is to carry out the estimation. Each of the chosen matches is

considered as one measurement together with its weight as uncertainty. The filtered state is

the position of the image within the map.

Gade and Jalving introduce post processing aided navigation system deployed on a com-

mercial underwater vehicle [17]. Idea is that the underwater vehicle records sensor data while

accomplishing mission under the sea surface (capturing images of the seabed). At the same

time, a vessel is positioned on the surface receiving information of its position through the

reliable Differential Global Positioning System (DGPS). After the mission is over, data are

combined together with position data that was simultaneously recorded on the survey vessel

located on the surface. Kalman filtering is used when merging the data. Error-state Kalman

filter [17] is used to combine sensor measurements and their error models. Observations in case

of such filter consist of the difference between measured and computed values. Instead of work-

ing directly with states, presented algorithm filters the errors, so that the ultimate position and

heading estimate can be derived by subtracting the estimated errors from, as authors suggest,

corresponding calculated state elements. This way, final aim of obtaining more accurate vehicle
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position and heading together with the tunable accuracy of such estimate [17] contibutes in

improving the accuracy of obtained seabed maps.

Dissertation [36] suggests how to improve the vehicle position estimation when reconstruct-

ing maps of the sea floor. Visual information of the terrain is used as the feedback that makes

terrain mapping data and the vehicle navigation data more consistent. Inspiration for investi-

gating lies in fact that map-making depends on localization quality. Navigation errors are poten-

tially large scale particularly seriously affecting the results when mapping is vehicle-based [36].

Existing local navigation is used together with terrain-relative measurements. Namely, terrain

sub-maps are created over short periods while the vehicle works out the inaccurate localization

using dead reckoning. Sub-maps are registered resulting in position measurements between two

vehicle states, placing an additional constraint on the vehicle position estimates. Delayed EKF

is used to merge together the measurements (“sub-map” registrations and previously reached

vehicle locations) into the navigation framework. Delayed state version of the recursive EKF

enables retaining knowledge of prior platform positions.

Yun et al. introduce simulation and present testing results of the navigation system that

combines the usage of Inertial Measurement Unit (IMU) together with GPS fixes that occur less

frequent and asynchronously [45]. Asynchronous Kalman filter with six states for orientation

and eight states for position estimation is implemented [45]. Process model takes the velocities

and GPS bias, models them as white noises passed through the first order systems with the

time constant. Measurement consists of synchronous (periodical) velocity measurements and

asynchronous DGPS information. The design of the filter for the position estimation algorithm

conforms to the standard routine, with the difference that the measurement vector has different

length depending on the number of available valid sensor inputs, hence it has a flexible size, but

each observation updates the state vector of the fixed size [45]. The idea of the asynchronism

enables that DGPS signals are used, if available and as soon as they are available, together

with the speed measurements. This way, the localization algorithm uses the most of the data

that are currently available.

The usage of the stochastic estimators implies using a known model that describes system

state transition from one moment to another (plant model) and model that describes transition

from state to the measurement (observation model). Such model does not have to be the same

each time. Jakuba and Yoerger [21] study the way to optimize navigation by estimating the

vehicle model parameters, for instance various dynamics or buoyancy coefficients that normally

influence the model, but are treated as constant. Their study involves post-processing of the

navigation data and heuristic estimate of these coefficients’ optimal value. Real missions that

applied the technique resulted in reduced noise in localization data, therefore giving clearer

tracking.

Julier and Uhlmann introduce the method that carries out nonlinear filtering [24]. It is
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an alternative generalization of the KF that changes the approach of representing mean and

variance of the random variable after it passes through an nonlinear transform. Their research

is a quite useful and comprehensive theoretical overview of filtering in general and the role

of Extended Kalman Filter (EKF) in switching to nonlinearity world. Introduced filter, later

known as Unscented Kalman Filter (UKF) is regarded as more precise alternative to EKF that

is, in addition, fairly easy for implementation. Julier and Uhlmann in their work point out

the shortcomings of the EKF. In search of general method that would overcome the problem,

instead of using proposed equations for projecting mean and covariance, a discrete set of points

is chosen and projected using a chosen non-linear transformation (Section § 3.11.1). Idea is

to use the parameters to approximate the Gaussian distribution instead of approximating the

nonlinear transformation. This way, propagation of the information is accomplished directly,

and the aim is to find a way to parametrise the information about the mean and covariance of

the distribution. Advantages of the filtering algorithm are in terms of precision and simplicity

(no need for Jacobian derivation) with empirical results for highly nonlinear problems including

vehicle control indicating as good as or better performance than EKF and higher robustness.

Wan and van der Merwe [39] go further in exploring the concept of UKF introduced by [24].

Their research briefly reminds of disadvantages manifested in EKF and improvements gained

with the usage of UKF. UKF theoretical backgrounds, the idea itself and meaning of used

variables were explained in comprehensive manner in one of the document sections. Usage of

UKF was reported together with the results in different estimation problems such as nonlinear

system identification, state estimation, parameter estimation and dual estimation problems [39].

UKF according to the authors achieved higher accuracy compared with EKF in all the domains

that were examined.

At this point, it is useful to make a short digression in order to give more details on EKF

and UKF.

Extended Kalman Filter

System can be described with set of states that evolve in time according to mathematical

functions that are nonlinear in many applications. Table 3.1 gives an overview, categorizing

systems as linear or nonlinear. Nonlinear state prediction would use previous state estimate

and mean value of the process noise:

x̂(k | k − 1) = f(x̂(k − 1),u(k), 0) (3.1)

EKF is intended for solving sub-optimal state estimation of a nonlinear system. The main char-

acteristic of EKF is that it analytically approximates - linearises - the process and measurement

functions (f() and h(), Table 3.1). Linearisation implies approximating these functions with
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their first derivative around current prediction, similarly as the ordinary functions are approxi-

mated with Taylor polynomials of first degree. In this case, derivation is slightly more complex

since model functions f() and h() take several input vectors and output the resulting vector.

Hence, the derivation will consist of partial derivation of process per state input vector (Equa-

tion 3.2) and per noise input vector (Equation 3.3). And partial derivation of measurement

function per state (Equation 3.4) and measurement noise (Equation 3.5). Partial derivatives

themselves will be Jacobian matrices considering that vector is derived per vector.

F (k) =
∂f

∂x
(x̂(k | k − 1),u(k), 0) (3.2)

W (k) =
∂f

∂n
(x̂(k | k − 1),u(k), 0) (3.3)

H(k) =
∂h

∂x
(x̂(k | k − 1), 0) (3.4)

V (k) =
∂h

∂m
(x̂(k | k − 1), 0) (3.5)

Subsequently, filtering process can be treated similarly as classic, discrete linear Kalman filter

introduced in previous section. Process model mathematically describes how the state changes

Algorithm 2 The Discrete Extended Kalman Filter

Require: E{x(0)} = x(0) = x̂(0) {initialize state}
Require: P (0) = δjkP0 {initialize covariance}
loop
k ⇐ k + 1
x̂(k | k − 1) = f(x̂(k − 1),u(k), 0) {state prediction}
P (k | k − 1) = F (k)P (k − 1)F T (k) +W (k)QW T (k) {state prediction uncertainty}
ν = z(k)− h(x̂(k | k − 1), 0) {innovation}
S = H(k)P (k | k − 1)HT (k) + V (k)RV T (k) {innovation uncertainty}
K = P (k | k − 1)HT (k)S−1 {“Kalman gain”}
x̂(k) = x̂(k | k − 1) +Kν {state correction}
P (k) = (I −KH(k))P (k | k − 1) {state correction uncertainty}
return x̂(k),P (k)

end loop

for the given input (Equation 3.1). Essential invention in EKF algorithm is the linearisation of

the given function around current state mean and variance which further results in estimation

process similar to the one described for linear Kalman filter.

Kalman gain determines the importance of each new observation z(k). Essentially - it

expresses how much we allow the measurement to influence the change of the predicted state at

the correction stage. According to the state correction formula (Algorithm 2), it is determined
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by the values of matricesQ and R which represent process noise covariance and the measurement

noise covariance (uncertainty), respectively. Values contained in K takes the range between

0 and 1 with zero (0) meaning that we use only prediction as the estimation and give no

importance to the measurement. One (1) on the other hand, means that we give all the

importance to the measurement.

Real world models are rarely linear. The motive for developing the Extended Kalman Filter

is based on the adaptation of the linear Kalman Filter for dealing with nonlinear problems.

However, it is possible that EKF significantly declines the performance quality [24]. When

making a prediction of state, observation or uncertainty of any of those for nonlinear systems,

linearisation can introduce errors. The inaccuracies of the EKF estimates are caused by trun-

cating errors in Taylor series when making an approximation. One example of such case is

given in [24] where the simulated object trajectory follows circular path. The reason for failing

in prediction stage in such scenario is in linear approximations that EKF, naturally, uses when

predicting the next state and its characteristics.

Unscented Kalman Filter (UKF)

UKF refers to usage of the unscented transform in EKF framework [23,35,39]. Instead of prop-

agating random Gaussian variable through nonlinear transform functions f() and g(), UKF

deterministically chooses set of sample points, large enough to capture the distribution of the

variable. Idea is that the probability distribution is approximated using weighting of the propa-

gated samples rather than the approximation of the nonlinear function. Distribution is modelled

as Gaussian, thus represented with mean and variance, as it is general principle with Kalman

filtering. The role of Unscented Transform (UT) is in providing the technique for estimating

statistical parameters of the Gaussian random variable (GRV) that undergoes nonlinear trans-

form (Figure 3.3). UT provides the pattern for sample selection and scheme for estimation of

statistical parameters (such as mean and variance for GRV) after nonlinear transformation of

selected samples.

Unscented transformation (UT). Provides a method for calculating statistics of a ran-

dom variable that undergoes nonlinear transform. Gaussian random variable a of vector length

L, mean value ā and variance P a is passed on to a nonlinear function g() that eventually creates

another random variable, b of the same length.

b = g(a)

The aim is to estimate mean and variance of the variable after the transformation. Such solution

will be useful since the nonlinearities in process model can be significant. First order Taylor

approximation was used within EKF for such task.
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UT defines the set of 2L + 1 samples (Ai) which are capturing the distribution (Figure

3.3(c)). Each sample has a weight coefficient (Wi) attached to it. Weights are normalized so

that they all sum up to one. Weights will be used in calculation of the mean and variance of

obtained variable b: b̄ and P b. Samples and their respective weights are formed using equations:

Ai = ā, W i =
k

L+k , i = 0

Ai = ā+ (
√

(L+ k)P a)i, W i =
1

2(L+k) , i = 1, ..., L

Ai = ā− (
√

(L+ k)P a)i−L, W i =
1

2(L+k) , i = L+ 1, ..., 2L

(3.6)

with parameter k setting the distance of sample points from a (Figure 3.3(c)). (
√

(L + k)P a)i

presents i-th row of matrix square root of (
√

(L + k)P a)i. Eventually, each selected sample is

substituted in nonlinear function g(), resulting in samples Bi = g(Ai) , i = 0, ..., 2L. Mean

value (first moment) and covariance (second moment) of the obtained random variable are:

b̄ =
∑2L

i=0 W iBi, P b =
∑2L

i=0 W i(Bi − b̄)(Bi − b̄)T (3.7)

b = g(a) =

[

a(1) cosa(2)

a(1) sina(2)

]

(3.8)

The concept was explained through an example [35]. Two-dimensional GRV was used to ex-

press the position in polar coordinates. Such position information contains number of samples

of range (distance) and bearing (angle). An example of nonlinear transformation where polar

coordinates are transferred into Cartesian coordinates using function g() (Equation 3.8) was

analysed. Original set of samples was shown in Figure 3.3(a). Figure 3.3(b) shows estimation

of the mean and covariance using first order linearisation (Jacobian) of g() - scheme that is

included in standard EKF. It is visible that both mean and covariance estimates have errors.

Although dissonant, EKF still performs well in practise implying the nonlinearities are mod-

erate [35]. In search of more accurate estimate, or at least less prone to nonlinearity, UT was

investigated. Figures 3.3(c) and 3.3(d) demonstrate the usage of UT. At first, samples have

been computed (Equation 3.6), transferred into Cartesian using function g() and their statistic

moments revealed using weighted average functions (Equation 3.7). Compared with linear ap-

proximation, UT proves to be more accurate. It emulates nonlinarities of the prediction model

better.

UKF, similarly as other Kalman filtering algorithms consists of two independent stages of

prediction and update. Both stages utilize UT and its features. GRV, similar with the one from

the example is used to store together state, process noise and measurement noise variables -

making altogether an augmented state vector 3.

Augmented state provides GRVs that will be sampled, weighted and propagated through
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(a) Original Gaussian random variable sam-
ples of range and bearing.
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(b) Gaussian variable after nonlinear trans-
form with mean and variance (ellipse) esti-
mated using linearisation of the transform.
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(c) Original Gaussian random variable with
samples selected by unscented transform al-
gorithm.
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(d) Gaussian variable after nonlinear trans-
form with mean and variance (ellipse) esti-
mated using unscented transform.

Figure 3.3: Nonlinear transformation of a Gaussian random variable and estimation of its
statistical parameters - mean and variance, using linearisation approximation and unscented
transform.

nonlinear process (f()) and measurement (h()) functions as a part of prediction and correction

stage. After each correction, UKF will hold an estimate of current mean and variance, ready

to continue with recursion (Algorithm 3).

Calculation-wise, the whole procedure is fairly easier compared with linearisation algorithm

since there is no need for calculating the Jacobian or Hessian, total number of computations

stays the same and it is easier to improvise with the algorithm with constrains or parameters

which define the way samples are selected. In addition, UT shown in example (Figure 3.3 )

handles the whole distribution and its transformation by tracking only five samples. Higher

dimensionality of GRV would result in more samples taken. However that number is still



25 3.11 Related work on AUV navigation

reasonably small compared with Monte Carlo methods. The only difficulty in implementation

could be the non-trivial solution of the square root of the matrix as the necessary stage in

unscented transform computation (Equation 3.6 ).

Algorithm 3 The Discrete Unscented Kalman Filter

Require: x̂(0) = E{x(0)} {initialize state}
Require: P (0) = δjkP 0 {initialize covariance}

Require: x̂aug(0) =





x̂
x(0)

xn(0)
xm(0)



 =





x̂(0)
0
0



 {init. augmented state: state + process noise +

meas. noise}
L = length(x̂aug) k = const {augmented state length and k parameter set}

Require: P aug(0) =





P 0 0 0
0 P n 0
0 0 Pm



 {initialize augmented state covariance}

loop
k ⇐ k + 1

Aaug(k − 1) =
[

x̂aug(k − 1)x̂aug(k − 1)±
√

(L)P aug(k − 1)
]

{compute samples - un-

scented transform}
W i, i = 0, ..., 2L {compute weights}
Ax(k | k − 1) = f(vectAx(k − 1), vectAn(k − 1)) {nonlinear process model}

x̂(k | k − 1) =
∑2L
i=0 W iA

x
i (k | k − 1) {state prediction}

P (k | k− 1) =
∑2L
i=0 W i(A

x
i (k | k− 1)− x̂(k | k− 1))(Ax

i (k | k− 1)− x̂(k | k− 1))T {state
prediction uncertainty}
Z(k | k − 1) = h(vectAx(k − 1), vectAm(k − 1)) {nonlinear measurement model}

Ẑ(k) =
∑2L

i=0 W iZi(k | k − 1) {measurement prediction - unscented transform}

P zz =
∑2L

i=0 W i(Zi(k | k − 1)− Ẑ(k))(Zi(k | k − 1)− Ẑ(k))T

P xz =
∑2L
i=0 W i(Ai(k | k − 1)− x̂(k | k − 1))(Zi(k | k − 1)− Ẑ(k))T

K = P xzP
−1
zz

x̂(k) = x̂(k | k − 1) +K(z(k)− Ẑ(k)) {state correction}
P (k) = P (k | k − 1)−KP zzK

T {state correction uncertainty}
return x̂(k),P (k)

end loop

3.11.2 Monte Carlo-based filtering methods

Monte Carlo methods, based on repeated random sampling as a part of the results computation

are covered in several works, mostly dealing with Particle Filters (PF). Gordon et al. enclose

bootstrap filter [19], also known as Particle Filter (PF) - a recursive algorithm based on rep-

resenting state vector as set of random samples which are updated and propagated. Update

stage of such algorithm uses Bayes rule, however the sampling strategy implies that the state
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space grid is not necessary the samples are localized in regions of high probability density [19].

Arulampalam et al. review Bayesian algorithms for nonlinear or non Gaussian problems. The

emphasis of the review is on Particle Filters (PF), their features, variants and, finally, inevitable

comparison with the standard EKF [1]. Doucet in his book on Monte Carlo methods [7] focuses

on creating an broad summary of theory and various applications of bootstrap filters, optimal

Monte Carlo filters and Particle Filters. Common feature of both “Unscented” and “Monte

Carlo Method” estimation techniques is the sampling phenomenon. By using sampling, lin-

earisation of plant and observation models is avoided, hence the cause of approximation error

that existed in EKF-based methods is cancelled this way. PF can handle non Gaussian and

and nonlinear processes, particularly exhibited in AUV models. Moreover, PF does not need to

have the initial information about the state. Sampling techniques, particularly PF, have been

recently and increasingly applied as tool for navigation of an underwater vehicle.

Karlsson et al. study a sea navigation method that relies on the underwater maps (depth

map) and sonar measurements that support the navigation system [27]. Particle Filter is used

for state estimation. Since the problem of underwater navigation using depth map is nonlinear,

sequential Monte Carlo methods are used, therefore state probability density is approximated

with set of particles where each particle has a location and weight assigned to it. Both values

reflect the value of the density of the region in the state space [27]. Hence, instead of updating

mean and covariance of the state, particle location and the weight of each particle are updated

with each observation using sampling importance resampling (SIR) algorithm [27], [19]. Prior to

navigation, terrain map (reference) was created using sonar depth measurements together with

the Differential GPS measurements and the obtained grid was used for navigation. Moreover,

the usage of Cramér-Rao bound was investigated in tasks such as INS system design, sensor

performance or even the amount of control of that is needed for the navigation. This work

presents a successful application of particle filtering for underwater navigation.

Above-mentioned work of Di Massa [6] presents navigation guided by the depth measured

with bathymetric sonar. Map-matching with digital bathymetric map stored on-board has been

accomplished using the Probabilistic Data Association Filter (PDAF) - a recursive algorithm

similar to Kalman filter, designed for one target of interest and several measurements of the

target state available each time step [6]. Position within the bathymetric map was stored as the

state vector that was filtered. Results proved that such navigation is possible and that having

a more diverse sea floor leads to more accurate navigation.

Maurelli et al. [30] propose a particle filter based underwater vehicle localization method

for both structured and unstructured environment. Mechanically scanned profiling sonar is

used as sensory device which provides information on distances from surrounding objects in

environment. There is no information about initial position and orientation of the vehicle prior

to localization. The work explores the possibility of dealing with dynamical situations when
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carrying out the localization results in movements of the vehicle that contribute in improving

the particle filter algorithm output - active localisation. Improvements of the PF algorithm

concern computational efficiency and effective way of treating state space in order to recover

from wrong convergence when using PFs. Simulation and real experimental results are available.

3.11.3 GPS aided localisation

Caiti explored localization technique that uses floating acoustic buoys provided with GPS con-

nection [4]. Idea is that buoys supply the vehicle with their GPS location by emitting the

information at regular time intervals. This way, vehicle can calculate the time of flight of the

acoustic signal and locate itself with respect to the buoys. In such constellation, additional

equipment has to be installed and maintained. Furthermore, acoustic signals are not reliable,

their range is limited and signals not always available.

Erol [9] proposes a method for localization of the network of underwater sensors using single

AUV as aiding device. This is just one of the examples of utilization of knowledge on AUV

location. The aim is to use it to maintain localization of group of other objects in the water

such as acoustic sensors. It is a system where AUV initially and occasionally receives GPS

signals while being on the surface. Once the GPS location is received, vehicle dives to a certain

depth and follows the defined path in between the sensor network. Set of freely deployed

acoustic sensors is receiving messages containing coordinates from the vehicle, since the vehicle

maintains updating its position using dead reckoning combined with occasional GPS correction.

Emphasis is on algorithms for distance estimation so that proper values for sensor coordinates

can be passed on to sensor network localization algorithm.

3.11.4 Localisation using a-priori map

Eustice experiments with re-navigation for AUVs [10]. The aim is to use a-priori given, ship

derived bathymetric maps to reduce dead reckoning drift by comparing ship-derived depth map

with the depth map created by vehicle. The difference between them is used as correction, a

tool for removing long-term drift.

Williams is presenting a new method that uses terrain features for aiding the tracking of

underwater vehicles in unstructured environments [43]. Benefit of such research lies in creating

a vehicle capable of adopting to terrain changes therefore capable of being reliably deployed for

longer time deep underwater, on a real task, with real environment. This work is revolutionary

in solving the position update for a vehicle. Most common solution is the usage of acoustic

transponders and triangulation algorithm as already exposed in Chapter § 3. Williams uses

a priori elevation maps of the sea floor, recorded by ships. Depth information obtained from

such mapping is assisting the localization process. Localization uses Monte Carlo methods,



Chapter 3: Navigation capabilities of AUVs 28

particularly PF, to manage map-based localization with position and velocity kept within state

vector. Non-Gaussian estimates obtained using particles are bounded using depth and altitude

observations by using range information to rule out less probable particles. Update is accom-

plished by resampling the particle distribution with respect to likeliness that the observation

detected is received, given the sample of the state space [43]. Apart form dealing with non-

Gaussian estimates, advantages of such method include ability to track more than one possible

target placement, which proves to be useful feature when handling map-based information.

Newman and Durrant-Whyte propose a navigation filter which uses inertial measurement unit

(IMU) and sonar to carry out the terrain-aided navigation [32]. IMU is used to measure the

kinematic parameters such as accelerations and rotations with respect to body frame, while

sonar measures absolute distances and orientations with respect to the world frame. In such

configuration, sonar system does the correction of the noise-corrupted, drift-prone position in-

dicated by IMU. Standard Kalman filter is used to integrate different sensor measurements with

a-priori dynamics model of the vehicle. Sonar observations are processed with target extraction

algorithm isolating terrain beacons. Map is simultaneously created during the vehicle mission.

It map serves as the representation of the world and contains distinctive features from environ-

ment. Map is intended to be a sparse world representation, containing least possible but still

enough information (features) to make a reference to and it is derived from estimation of the

floor gradient using sonar measurements. Pose observation is defined relative to features from

the map that correspond to features from the real world.

Similarly, Williams et al. present the results of operational algorithm that processes sonar

scans in order to extract robust features of the environment further used to build an environ-

ment map consisting of those features [44]. The vehicle location is estimated within the built

environment map. The work is an example of practical application of SLAM (Section § 3.8).

Another contribution of Eustice [14], based on vehicle localization with simultaneous terrain-

features map creation (SLAM), reports usage of delayed state model. Robot movement is

observed with respect to its previous position. Benefit of the delayed state framework lies in

having precisely sparse information matrix. Main idea of the work is that, unlike previous

algorithms, sparseness of the SLAM information matrix used in localization is guaranteed, not

approximated.

3.11.5 Optical sensing

Tena Ruiz investigates terrain aided localization of an AUV from the perspective of Simulta-

neous Localization and Mapping (SLAM) [37]. Sonar device is used to sense the environment

and its readings are used to find targets located not far from the vehicle. SLAM algorithm uses

detected targets together with a vehicle model to simultaneously construct the environment
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map and localize the vehicle using filtering. Multiple Hypothesis Tracking Filter is adjusted to

the SLAM framework. Necessary step of matching the sonar images with environment targets

was accomplished by extracting the features and associating them with the sonar recordings

by calculating a score that expresses the probability of a certain target causing a certain sonar

output.

Williams presents the results of sonar usage together with the vision based system in SLAM

algorithm for terrain-aided navigation [42]. Seabed covered with visually distinctive textured

reefs was used in estimating vehicle motion and creating a map of the reef structure.

Eustice proposes several works on vision based localisation for AUVs in an unstructured

undersea environment. Framework presented in [11] blends together sensor data and camera

measurements in order to determine the relative pose. The final aim is to concurrently determine

the vehicle position and the past trajectory [11]. Augmented state Kalman filter is used to

filter out the pose of the vehicle. History of poses defines vehicle trajectory. Registered images

obtained with camera provide spatial constraints for the position hence providing the necessary

feedback for pose estimation. Moreover, the registration of the image pairs is more robust

compared with the situation when only camera is used for sensing. The other vision based SLAM

approach [12] addresses the problem of localization within large areas. Precise localization is a

prerequisite for high resolution underwater imaging of large objects placed on the sea-bed [12].

Precise navigation would enable decent coverage of the spacious site of interest which is mission

task. Proposed solution uses a vision-based SLAM approach together with vehicle’s inertial

sensors’ measurements. The originality of the paper is that it suggests a genuine solution for

evaluating covariance bounds within the EKF used for filtering SLAM information.

Carreras [5] experiments with the usage of visual information for underwater robot localisa-

tion within the pool with clear visibility. This method is not intended for ocean environment,

however, it is useful from the computer-vision side and potentially a tool to aid video mo-

saicking algorithms. Camera is mounted on the vehicle and used to simultaneously record the

bottom of the tank covered with the coded pattern. This way, structured environment is used

for, map-based 3D localisation of the vehicle. Number of computer-vision related matters are

examined, such as: necessary camera calibration, filtering methods, landmark detection. Local-

isation performance is reported to be high, with high computation rate and, importantly, prone

to drift. Hence, reliable position information is good enough to derive the velocity estimates

from it. In addition, work contains the analysis of the source of localisation errors and real time

application examples.
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3.11.6 Simultaneous location and mapping

In order to deal with SLAM issues, several methodologies are covered in literature. View-based

approach generally relies on registering different types of imagery: optical imagery or depth

imagery in order to establish spatial constraints that are vision-based, therefore, not prone to

drift error ( [10, 18, 36]). This approach does not include precise representation of features.

SLAM frameworks that, however, use features (feature-based) instead of view are reported in

( [37, 42]).

3.11.7 Cooperative navigation

The dissertation of Bahr ( [2]) focuses on cooperative navigation, and furthermore, general

background on localisation is surveyed. Bahr proposes a probabilistic-based algorithm, partic-

ularly tailored to the underwater environment. Cooperation in navigation is already available

in air or the surface of the Earth. The work focuses on cooperative localization where differ-

ent vehicles, arranged in group, communicate between each other. To accomplish cooperative

localization, algorithm estimates inter vehicle range, resulting in position and the uncertainty

of the position, then exchanges that information with other vehicles. Main idea is to exchange

localisation-related information. The whole process consists of data acquisition and data pro-

cessing stage. Forward propagation of position information causes more than one solution

available. Further data processing gives an estimate of the location by processing all the possi-

bilities. Stated advantages of such approach are that, apart from having more than one vehicle,

no additional infrastructure is necessary [2]. Everything comes down to the usual sensor and

communication package already available on vehicles [2].

Fallon et al. [15] describe the implementation of the cooperative localisation algorithm that

works within group of AUV vehicles, aided with the position information from the autonomous

surface vehicle to bound the estimation errors. Instead of the usage of expensive navigation

sensors for communicating under the water surface, an approach where cooperation with one

surface vehicle was suggested. Surface vehicle is intended to contribute with accurate position

information. One of the contributions of the work is a trial of EKF localisation run on AUV and

supported by the surface vehicle moving along with the AUV. Work investigates the usage of

different estimators - Particle Filters, non-linear Least-Squares Optimization (NLS) and EKF

in cooperation localisation within a mission consisting of two AUVs and one surface vehicle. It

ends up comparing performance of each algorithm with the final outcome giving more credits

to PF and NLS.
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Navigation sensors

This chapter gives an overview of the sensors used for localisation of an underwater vehicle

and their characteristics. Underwater positioning can be based on usage of different types of

sensors combined together in one system. The role of these sensors is to measure absolute

position, velocities and heading/orientation. Localization is influenced with the development

and performance of sensor devices. Sensors can be regarded as the means for managing the

localization. Faster they are, more accurate they are, localization has more chances to perform

better. Each sensor has its own reference system in which it operates. It is important to say

that sensors output measurements with reference either in body frame (Figure 5.1(b)) - the

one fixed to the object or in global frame (Figure 5.1(a)). Basic navigation sensor set for a

high-end AUV usually consists of depth sensor, magnetic compass, GPS device, LBL acoustic

device, Doppler Velocity Log (DVL) and gyroscope, particularly fibre-optic gyroscope (FOG).

4.1 Inertial navigation system (INS)

Inertial navigation combines measurements of accelerometers and gyroscopes to track down the

position and orientation of an object. Motion and rotation information obtained this way are

processed in order to provide an estimate of objects location with respect to initial reference.

Recent INS configurations tend to consist of compact, more accurate and higher performance

sensor devices.

4.1.1 Gyroscope

Gyroscope is an INS sensor device that essentially measures orientation of the device. Although

classic gyroscope measures orientation, modern gyroscopes are capable of measuring the angu-

31
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lar rate. Gyroscopes can be mechanical, optical or MEMS gyroscopes. Underwater navigation

uses fibre-optic gyroscope (FOG). FOG is based on measuring the interference of two light

beams that pass through a coiled optical fibre in both directions. FOG provides quite precise

information on rotation and its usage is intended for applications that demand higher perfor-

mance. FOG can provide the angular information: rate of change of heading (yaw rate) and

the yaw/heading itself. Both measurements can be used, depending on configuration. Since the

sensor actually measures yaw rate (absolute measurement), yaw can be derived by integrating

yaw rate in time. Disadvantage of such principally precise measurement, is that it is relative to

previous yaw value and if that value turned out to be imprecise, drift can increase or contain a

permanent bias. The KVH DSP-3000 device provides the Nessie vehicle with accurate angular

rates.

4.1.2 Doppler Velocity Log (DVL)

DVL is intended to measure velocities. Transceiver components mounted on the device, pointing

downwards (towards the bottom) emit acoustic impulses which are expected to be reflected if

the DVL is close enough to the bottom. In case of existing reflectance it is called having

“bottom-lock”. DVL usually has four transceivers. Each of them makes an angle with respect

to the sea floor. If “bottom-locked”, those four sensors undergo Doppler shift effect. Besides

Doppler speeds, DVL measures roll, pitch and heading angles and fuses them together when

computing surge, sway and heave velocity within the 3D speed vector in world referenced frame.

The Teledyne Explorer PA DVL is used on Nessie AUV. This unit supplies the vehicle with

altitude, surge, sway and heave velocities. Operation altitude ranges from 0.5 m to 80 m.

Accuracy of the measured speeds is 0.7 cm/s when moving at the speed of 1 m/s.

4.1.3 Magnetic compass

Magnetic compass provides 3D vector of local magnetic field. Magnetic compass points at mag-

netic north. Direction is determined so that it aligns with Earth’s magnetic field. Important

procedure before starting the compass usage is calibration. North direction as it appears on

maps points to the geographic north (“true north”). That is the direction towards the rotation

axis of the Earth. The direction of the magnetic north does not overlap with the direction of

the geographic north. Magnetic declination is an angle between magnetic north (measured by

compass) direction and the true north direction (the one that maps refer to). Depending on

location where the compass is used, magnetic declination can vary and the variation is different

on different spots on the Earth’s surface. Hence the calibration is necessary before usage. Mag-

netic compass gives measurements with slow variation in space. In addition, different magnetic

effects caused by electric currents can affect the measurement, thus it is robust absolute mea-
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surement of heading, nonetheless, prone to noise. Nessie vehicle uses TCM 2.6 compass that

precisely measures heading, pitch, and roll. Accuracy of the heading measurement is 0.8◦.

4.1.4 Depth sensor

Bathymetry system accomplishes depth measurement. It is possible to use the acoustic system

for this purpose, however, bathymeter using pressure information tends to be more precise and

trustable. Pressure sensor is standard piece of the equipment for an AUV. By measuring the

pressure, it becomes possible to correlate the value of pressure with the value of depth. Device

can frequently ascertain the absolute depth with good precision. A Keller Series 33X depth

sensor measures the distance to surface having the depth range of 0 - 90 m and the accuracy

of 0.05 m.

4.1.5 Global Positioning System (GPS)

This well known satellite-based navigation system provides position information anywhere on

the Earth surface or in the air, reasonably close to the surface. Due to absorption of electro-

magnetic waves in the water GPS signal is not available underwater. Despite the fact that GPS

is not available, vehicles are equipped with GPS receiver intended to be used for initial position

information before submerging or for occasional position updates if the vehicle temporarily

goes back to the surface. Precision of the GPS position information can vary. Namely, range

of the standard deviation errors can have the order of 25.27 m [16]. Such huge deviation can

cause significant inaccuracies in navigation. An example of the influence of GPS imprecision

was shown in Figure 6.6. Differential GPS (DGPS) [16] can be used in situations when better

precision is needed.

4.2 Acoustic positioning system

Provides the absolute position, a ground-based reference. Principal way of exchanging the

information through the environment is sound wave. Long baseline (LBL) is used for measuring

position with respect to several tethered beacons with known position, placed in water (Section

§ 3.6). It can be understood as the extension of the GPS information below the water surface.

Such system employs acoustic signals to measure the distances. Vehicle uses the acoustic

transponder to send the acoustic wave (“pinging”). The wave reaches beacon and reflects back

to the vehicle . LBL system consists of transceiver and array-arranged collection of beacons.

LBL transceiver pings each of the beacons and detects the signal travel time in order to calculate

the distance, knowing the speed of sound in water. Distances from the beacons are combined
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Figure 4.1: Sensor fusion diagram.

Table 4.1: Navigation sensors characteristics.

Sensor Measures Update rate Precision Accuracy Range

Pressure
depth 10 Hz

0.0002 bar 0.005 bar 0− 10 bar
(0.002 m) (0.05 m) (0-90 m in water)

✗ heave velocity is calculated by deriving depth in time - higher possibility of error! distance from surface available no matter of distance from the seabed

Compass

yaw(heading)
10 Hz

0.1◦ 0.8◦

pitch tilt ±50◦

roll ! absolute measure of heading - no drift
✗ needs magnetic north correction (due to magnetic declination)

✗ prone to magnetic disturbance

FOG yaw rate 5Hz < 1◦/hr ±20◦/hr ±375◦/s! high accuracy in heading measurement, compared to compass
✗ drifts over time, needs correction for the Earth rotation

DVL
surge velocity

10 Hz 0.1 cm
s

±0.7 cm
s

at 1m
s4

±9.5m
s

sway velocity ±1.9 cm
s

at 3m
s4

heave velocity ±3.0 cm
s

at 5m
s4

✗ relative measurement of velocity
✗ requires depth - looses lock at 0.6 m altitude resulting in no output

together in triangulation method. Triangulation makes it possible to determine the position of

the robot in the network of fixed beacons. LBL position update can introduce the outliers that

need to be rejected or filtered.
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Methodology

Position, orientation and velocities of a vehicle underwater are stored within the state vector.

Proposed solution for localization uses state-space approach and Extended Kalman Filter to

estimate the value of the state vector using data from odometry sensors and acoustic positioning

system (LBL), if available. Data are merged together using the EKF. Reasons for choosing this

method are influenced by the application itself. Localisation is intended to work in unstructured

environments, with no clear visibility, relying on kinetic and absolute position measurements.

Therefore, approaches that use vision, or capture the terrain structure in order to aid the nav-

igation were not an adequate solution. Relying on the remaining sensor configuration allows

the usage of Kalman filter to iteratively and recursively estimate the state vector by combin-

ing together different types of dynamics-related data. State-space approach is convenient for

manipulation with multivariate data and nonlinear or non Gaussian processes [35].

Mathematical model of the system is the integral part of the Kalman filter. It is used

to define the state transition law by applying well known kinematic equations. Kinematic

equations describe the object motion. Constant velocity kinematic model is used as system

model to predict the movements of the submerged body. States are predicted at each time-step

using the model and previous state (equation 5.1). It is important to note that localization

reduces down to solving non-linear filtering problem. System model equations are nonlinear

function of the state elements. Sensor measurements are used when available and incorporated

into the observation (measurement) in order to update and correct the predicted filter state.

Range of available sensors give information on vehicle’s current location state. Overview of the

sensors and the values that they measure is given in Chapter § 4.

35
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5.1 Process model

Five d.o.f. process model is used to describe the state transition in time. In proposed discrete-

time stochastic model, five degrees of freedom include position values and two angle states:

yaw and pitch - making altogether five possible values to change in modelling vehicle position

(figure 5.1(a)). Since the application uses state-space approach, focus will be on defining a

state vector that would incorporate all the relevant values for the dynamic system that does the

localisation - kinematic and position variables. In spirit of that, system state vector combines

together metric and angular values. At discrete time moment k, it values:

X(k) =
[

x y z a u v w ψ ϕ ψ̇ ϕ̇
]T

where x takes the value of north (expressed in meters), y is east and z is depth. Inspiration for

the nomenclature was taken from [34]. a marks the altitude with u, v and w standing for linear

velocities: surge velocity, sway velocity and heave velocity, respectfully. The rest of the state

vector covers angular values (expressed in radians or degrees). ψ and ϕ are used as yaw and

pitch, hence describing the vehicle orientation. ψ̇ and ϕ̇ are angular velocities: yaw rate and

pitch rate, respectfully. The state vector incorporates all the relevant information necessary

to describe the system under investigation. Angle and velocity for pitch degree of freedom is

included in 5 d.o.f. system model since it can make a difference in estimating vehicle location

in certain movement scenarios (figure 5.1(c)). System model is describing how the state X

evolves in time. It is defined as a constant speed model that uses previous state and noise

to make a prediction on the next state vector value X(k) using non-linear function f() and

process noise vector n (equation 5.1) where N =
[

u̇ v̇ ẇ ψ̈ ϕ̈
]T

. Process noise models

inaccuracies or unpredictable disturbances in motion model [35].

X(k) = f(X(k − 1),N(k − 1)) (5.1)
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Figure 5.1: AUV state vector values and five degrees of freedom.
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2 ) cos(ϕ)

u+ u̇T

v + v̇T

w + ẇT
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(5.2)

To summarize, implementing vehicle localization using EKF demands establishing two models:

first one describing the state evolution (system model) and the second model that associates

noisy measurement with the state (measurement model).

EKF (§ 3.11.1) was chosen for the state estimation as a logic choice being an algorithm

that integrates together different sensor measurements, makes a sub-optimal, recursive state
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estimation and above all, is derived for nonlinear systems. As the theory of nonlinear filtering

suggests, state-space approach is used for modelling discrete-time dynamic system in this ap-

plication. The main feature of EKF is that it linearises the system model and measurement

model nonlinear functions. System model is further developed according to formulas 3.2, 3.3,

3.4 and 3.5 from Chapter on Nonlinear filtering § 5, resulting in matrices:

F (k) =
∂f

∂X
(X̂(k | k − 1), 0) =
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where c(ψ) and c(ϕ) stand for cos(ψ) and cos(ϕ) respectfully. Similarly, s(ψ) and s(ϕ) mark

the angle sinuses.
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Knowing plant model and deriving F (k), W (k) enables EKF algorithm to complete the pre-

diction stage using known formulas. Next step is the correction of the prediction using data

obtained from measurement.
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5.2 Measurement model

Measurement model introduces measurement equation which establishes the connection between

the measurements and the target state (equation 5.3) where Z(k) represents the measurement

at time k, X(k) represents state vector andM(k) represents noise. Purpose of the measurement

is to be able to update, correct the state X(k) using measurements Z(k). h() is generally a

non-linear function. EKF idea is to linearise the measurement model.

H(k) =
∂h

∂X
(X̂(k | k − 1), 0)

R(k) =
∂h

∂M
(X̂(k | k − 1), 0)

However, for this particular application and available sensor configuration, state vector elements

are measured directly, hence h() can be expressed with matrix containing “ones” at particu-

lar positions since the measurement relation becomes equality. There is no need for partial

derivation. Measurement noise is submitted in form of an additive Gaussian zero-mean noise

assigned to each measured value. Measurement (observation) noise is characterised with zero

mean (E{M(k)} = 0) and standard deviation (E{M(k)MT (k)}) given as filter parameter

for each of the measured values. It expresses how uncertain or varying measurement of each

of the state values is. The measurement in vehicle configuration used for the thesis enables

direct measurement of each of the states and each measurement of one of the state elements

is described with its uncertainty - variance of the Gaussian noise. Variances are given as filter

parameters expressing how much we trust in the measurement.

Z(k) = h(X(k),M (k)) = HX(k | k − 1) +M (k) (5.3)

One of the features of the process is that measurements are not available all the time. The reason

is the nature of the process of estimating the location itself. Simply - messages from sensors

arrive at different moments and it happens that some of the sensors could not be available due to

different causes. The idea is to take all the available information at the moment of filtering and

integrate it together in measurement model, as a filter observation. Alternatively, each message

can be filtered upon its arrival. As a result, filter would keep carrying out the prediction and

correction blending together various measurements in a estimate of higher quality, with the

ability to compensate the missing sensor measurements.

A short overview of the sensor measurements and the pattern of formation of the measure-

ment model is presented in following section. Idea for the solution has been introduced in [34].

Some other implementations of EKF for underwater navigation have reported the usage of sim-

ilar strategy for merging the measurements together [3, 8]. Sensors have been introduced with
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more details in chapter 4. Linear observation model varies depending on the measured values

and sensors used for the measurement.

• Pressure sensor periodically “feeds” the filter with depth and heave velocity informa-

tion. Heave velocity information is derived from depth measurement by derivation of its

value per elapsed time. Measurement model is linear, described with the transformation

matrix Hdepth. Uncertainty of the measurement is expressed with measurement noise

covariance matrix R (§ 3.3) - covariance of the measurement vector.

Hdepth(k) =

[

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

]

,Rdepth(k) =

[

σ2
z 0

0 σ2
w

]

(5.4)

• Compass supplies angular measurements such as pitch, yaw, pitch rate (figure 5.1(a)).

Similarly as with pressure sensor measurement model, rate of change of pitch is obtained

with derivation of pitch measurement. Measurement model is linear, described with the

transformation matrix Hcompass. Rcompass is measurement noise matrix (§ 3.3) contain-

ing variances depicting Gaussian noise of particular measurements.

Hcompass(k) =







0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0






,Rcompass(k) =







σ2
ϕ 0 0

0 σ2
ϕ̇ 0

0 0 σ2
ψ







(5.5)

• Fiber-optic-gyroscope sensor (FOG) measures yaw rate (ψ̇). FOG, gives an absolute

measurement of the rate. In case of compass usage, yaw rate is determined by doing

derivation of the measured heading in time. FOG turns out to be quite precise and fast

sensor. Yaw rate can be used to determine the yaw (heading) itself by integrating the yaw

rates over time. That would imply having relative measurement of yaw - result would

append to the previous value. Initial absolute measurement is obtained from compass.

In case compass made an error with the initial value, relative FOG measurements cannot

correct it. In case it existed - it propagates. Disadvantage of the usage of FOG for yaw

measurement is that the compass-obtained initial heading value is not always accurate.

This can result in constant bias of the measured heading in case the initial heading was

measured with an error. Error would propagate through relative measurements in form of

a bias. Given that compass is prone to noise and often needs re-calibration, this scenario

is possible. Measurement model matrices are:

Hfog(k) =
[

0 0 0 0 0 0 0 0 0 1 0
]

,Rfog(k) =
[

σ2
ψ̇

]

(5.6)
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• Doppler Velocity Log (DVL) measures linear speeds - surge and sway velocities with

respect to the vehicle axes (Figure 5.1(b)) and the altitude. Hdvl and Rdvl are measure-

ment matrix and measurement noise covariance matrix. Rdvl contains variances depicting

Gaussian noises of particular measurements. If DVL gives no valid velocity output due to

insufficient signal (“DVL lock” lost), EKF is using the available data available from other

sensors to make an update or it just maintains the prediction until the fresh observation

arrives. Uncertainty increases in case there is no observation.

Hdvl(k) =







0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0






,Rdvl(k) =







σ2
a 0 0

0 σ2
u 0

0 0 σ2
v






(5.7)

• Long-baseline (LBL) gives an absolute position update based on GPS signal from sur-

face as reference and triangulation obtained from transponders with known global position

place around the vehicle (figure 3.2(a)). This serves as a crucial anti-drift tool because

it is not relative to previous measurements. It results in a fresh update of global position

in form of latitude and longitude that can be mapped into north and east of the absolute

position in meters. Algorithmically, this can be regarded as an update of north and east

causing matrices of measurement update to become:

H lbl(k) =

[

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0

]

,Rlbl(k) =

[

σ2
n 0

0 σ2
e

]

(5.8)

• GPS similarly as LBL, directly outputs a fairly accurate position measurement. GPS

signal is not available underwater, hence, it is used at the beginning of the mission, when

the vehicle is still on the surface, to establish the initial estimate. Algorithm keeps the

track of all the GPS messages received, and in case the vehicle reaches the surface after

deployment being able to receive GPS signal - that information is used to update the

absolute position and correct the dead reckoning drift that happened meanwhile. Kalman

fiter matrices keep the same form as with the LBL, uncertainties can be set to different

values.

Once having the measurement, it is important to know its strategy of integration. Kalman

filtering is intended to work in two modes:

• asynchronous filtering messages from each sensor individually upon retrieval. Obser-

vation uses only measurements form each sensor individually. Every time sensor device

produces a new output, all the localization variables are updated.
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(b) EKF filters periodically.

Figure 5.2: Two modes for combining together sensor measurements into observation.

• synchronous periodically updating with the most recent observation that combines to-

gether measurements from different sensors that occurred since the last update. User

defined rate will determine the interval of the update.

Integrating together several different measurements into one observation would imply concate-

nating together several measurement matrices (Z,H) and measurement noise matrices (R),

as shown in 5.9 for the sample case of three sensor measurements included in observation.

Kalman filter maintains its own timer. Observation is reset after each timer set period.

Z(k) =







ZsensorI

ZsensorII

ZsensorIII






,H(k) =







HsensorI

HsensorII

HsensorIII






,R(k) =







RsensorI 0 0

0 RsensorII 0

0 0 RsensorIII







(5.9)

Literature offers different approaches in managing Kalman filter update and managing obser-

vations. Matrix concatenation is used to gather together all the measurements into one obser-

vation. In case certain sensor measurement repeats during the update interval, the most recent

measurement takes place of its preceding one within the periodic observation. This substitution

is fairly realistic to happen, knowing that the user chooses filter update interval and that sensor

devices have a range of frequencies, possibly more frequent that filter itself (table 4.1). Simply

put, observation is a buffer that stores the most recent collection of different measurements that

occurred in meanwhile. Depending on the mode of operation (asynchoronous or synchrononus)

the observation can contain the measurement from an individual sensor or those sensors that

were active during the predefined period T of update (Figure 5.2(b)). Choosing the newest
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measurement is advantage from the point of having the most recent value as measurement,

especially if the Kalman update interval is longer. However, it can also be a disadvantage in

situations when certain sensor measurements happen at the beginning of the observation inter-

val. For those “early” measured values, prediction stage will use less accurate time-stamp in

EKF and the measurement itself would suit reality less, since it’s usage is delayed. This effect

is visible if update periods of EKF are long, which is not so common case.

Having more than one measurement involved in estimation of the global state is a good

characteristic. The estimate which uses more diverse data gives better estimate since it is

possible to combine together more that one sort of observation. Another advantage follows the

fact that the whole set of state variables is updated each time, resulting in more correlation

between variables. Hence those that are missing for some reason can be compensated this way.

Results of simulations using authentic data and the real missions are given in Chapter § 6.

5.3 Correction

Odometry integrates velocity and acceleration data collected from devices such as gyroscope

or accelerometers. Integration of noisy data over time or usage of “relative measurements”

(those calculated from absolute measurements) results in drift or bias of the final estimate. In

order to recover from that, algorithms perform the correction. Correction takes an absolute

measurement which should be less precise, possibly noisy, but not prone to drifting. An example

which illustrates the phenomenon could be a man that walks with the eyes closed trying to

keep the track of his position by measuring the steps and predicting where he could possibly

be judging on number of steps and their size. Steps have the role of “relative measurement” -

one quantity is used to estimate the other one that’s correlated with it. Naturally, a man will

keep making errors in his position estimate. Moreover, these errors will accumulate over time

producing drift. Correction would require the man to open his eyes and observe the current

position (absolute measurement), compare it with the position predicted by counting steps and

neutralise the drift before carrying on with the eyes closed.

5.4 Sensor fusion

Localisation algorithm collects the incoming sensor information and computes the pose of the

vehicle by processing the whole data cluster obtained from sensor devices. Such procedure

is regarded as sensor fusion. Basic sort of sensor fusion implementation is incorporated in

navigation algorithm by combining different quantities into a jointly updated state vector with

position, orientation and velocities (Figure 4.1).
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5.5 Implementation

Localisation algorithm was planned to be part of navigation module of Ocean System Lab’s

Nessie vehicle. Vehicle’s real-time operating system is Linux Ubuntu. Designing navigation

requires programming the module using C++ programming language, conforming with avail-

able libraries. The aim is to produce an applicable module that fits in the existing software

system and accomplishes the task theoretically explained in this chapter. In addition, Nessie

is supported with Robot Operating System (ROS, http://www.ros.org/wiki/) - meta oper-

ating system that manages various processes maintained on vehicle and the real-time exchange

of data between different modules. Hence, EKF navigation is implemented as a ROS package

tailored to Nessie’s messaging and processing scheme. One of the difficulties that needs to

be taken into account when working with angles is angle wrapping - an inevitable issue in all

the implementations that involve angular values. Fact is that filtering does calculations with

the angular values. Moreover, angular functions are 2π periodical. Hence, it is sufficient to

represent the values in a limited interval, e.g. from (0, 2π], or (−π,+π]. Angle values need to

be scaled back to the interval after multiplication or subtraction because the value obtained

without wrapping can be misleading, especially if it expresses discrepancy or if is used for the

correction. Simply, raw subtraction does not always correctly express the relation between two

angles in terms of their difference and can cause unwanted behaviour. An example is shown

in Figure 5.3. Two similar angular signals (real and estimated heading value: ang1 and ang2,

wrapped in different intervals) have been subtracted (Figure 5.3, up). If the output of sub-

traction is used for control or gain, system would sense false jumps. Different intervals of angle

wrapping (Figure 5.3, down) can make difference, too. Therefore angle wrapping to 0, 2π and

−π,+π does not give the same result.
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Figure 5.3: Importance of angle wrapping. Angular values used as gain should be wrapped
around zero.
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Results

Main purpose of the thesis is the implementation of a navigation system that uses measurements

from different sensors, fuses the sensory data together in order to make presumably better

quality estimate of the position and the orientation of the underwater robot. Existing data

from the real missions were used to carry out the initial trials. It is useful to mention that there

is no exact ground truth for underwater robot localization available. GPS signal, if available,

could serve as an absolute position reference: either directly or in form of LBL. Experimental

results have been obtained for different missions. Good news, however, is that the absolute

depth measurement is quite accurate and frequent, making AUV localisation a 2D task.

6.1 Real navigation scenario

Authentic data taken from previously recorded Nessie mission were used to simulate the al-

gorithm “offline” as the part of the stage intended for testing and correcting. Besides, being

able to repeat the same measurement scenario enables more insight in filtering process and

benefits of fusing together the sensor data. .bag files (http://www.ros.org/wiki/) containing

recorded real-time messages with sensor measurements, were used as source. Furthermore, it

allows designing the code in its original C++ form that will require little modification once

deployed on the vehicle in form of ROS package since .bag files emulate authentic messages

and timestamps. One of the deficiencies of the evaluation of localisation results is the fact

that there is no exact ground truth to compare the result with. Dead reckoning localisation

substituted with occasional LBL position updates was compared with the localisation obtained

after filtering (Figures 6.1, 6.2) for the recorded straight line trajectory mission.

Selecting a heading measurement with good performance For a high-end underwater

vehicle such as Nessie, supplied with FOG-based INS, DVL and LBL, main source of navigation

45
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error is influenced by transformation of vehicle-referenced velocities to world-referenced veloc-

ities [2], particularly due to yaw (heading) measurement errors. Yaw can be measured using

several devices, each having different accuracy and performance. Simulation with data from

previous missions was carried out to see which device gives the best performance for a given

underwater vehicle.

Heading calculated by integrating FOG’s yaw rate - tends to be accurate and fast, less

prone to noise. Nevertheless, it is calculated each time by appending yaw rate value integrated

in time on the previous yaw value (relative measurement). Therefore, it is sensible on initial

absolute heading measurement. In case initial yaw is imprecise, a constant bias exists in yaw

measurement (Figure 6.2). Constant bias causes sudden steps in position estimate obtained

using EKF. This is expected scenario since the sensor responsible for measuring initial heading

is magnetic compass, device sensitive to disturbances coming from environment (Figure 6.3(b)).

In real experiments biggest obstacle was proper calibration of magnetic compass. In practice,

tests have showed many failures in compass heading measurement, possibly due to calibration

and magnetic declination. There is yet space to do more testing with better compass tuning.

To overcome the problem of accurate yaw measurement, EKF used in experiments will either

ignore the yaw measurement (it is possible since sensor fusion successfully compensates missing

heading information with yaw rate obtained from FOG) or use it with high variance assigned

to yaw measurement.

Loch Earn dataset - straight line movement: Example of basic EKF localisation us-

ing inertial measurements aided with LBL acoustic positioning system was tested on straight

line movement of approximately 80 m length, recorded at the lake Loch Earn. For simulation

purposes, sensor measurements are stored in a .bag file, that can be replayed, producing real-

time messages of sensor measurements as they originally occurred. At this point, it is important

to revise which sensors were used, their main features and, finally, filtering parameters.

Standard sensor configuration comprising of pressure sensor, magnetic compass, FOG and

DVL is used in the mission. Absolute position correction was carried out using LBL system.

Important fact is that the heading was measured with magnetic compass only at the beginning.

Later on, it kept being calculated by integrating yaw rate obtained from FOG. Alternative

solution for the heading measurement would be the usage of compass for direct acquiring of

yaw, but such option exposed calibration difficulties. Result of EKF localisation algorithm

was shown in north-east map (Figure 6.1(a), 6.2(a)). Different parameter values for EKF

were tested. Table 6.1 revises all filter parameters used for filter tuning, together with their

role. Essentially, setting high standard deviation for a Gaussian of a certain parameter can be

interpreted as having more uncertainty in value that it represents - whether it is a measurement

uncertainty or uncertainty of the predicted value (model uncertainty). Therefore, we can choose

to be confident in certain sensor measurement and/or certain model prediction, and observe the
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Table 6.1: EKF navigation parameters.

Parameter Signature 1 Units Description

standard deviation of the ...
SDNorth σn m north observation
SDEast σe m east observation
SDDepth σd m depth observation
SDAltitude σa m altitude observation
SDu σu

m
s

surge velocity observation
SDv σv

m
s

sway velocity observation
SDw σw

m
s

heave velocity observation
SDyaw σψ rad heading observation
SDpitch σϕ rad pitch observation
SDyawRate σψ̇

rad
s

heading rate observation
SDpitchRate σϕ̇ rad

s
pitch rate observation

standard deviation of the ... process noise
SDuModel σu̇

m
s2

surge acceleration
SDvModel σv̇

m
s2

sway acceleration
SDwModel σẇ

m
s2

heave acceleration
SDyawRateModel σv̇

rad
s2

yaw acceleration
SDpitchRateModel σẇ rad

s2
pitch acceleration

simulation outcome of such setting. Setting the parameters properly improves the performance

of the filter. Straight line movement with authentic sensor measurements recorded in Loch

Earn was a basis for initial tests of the EKF localisation algorithm. Red line shows the dead

reckoning navigation, which is directly updated with absolute position update (LBL). Dead

reckoning uses values periodically (≈5Hz) obtained from DVL and FOG (linear velocities: u

and v and heading ψ, respectfully), and substitutes them into equations similar to ones used

for north and east prediction within prediction model:

north = north+ (uT + u̇
T 2

2
) cos(ψ)− (vT + v̇

T 2

2
) sin(ψ)

east = east+ (uT + u̇
T 2

2
) sin(ψ) + (vT + v̇

T 2

2
) cos(ψ)

EKF updates periodically (synchronous mode), with period set to 230 ms. At first, simula-

tion parameters SDnorth, SDeast, SDyaw and SDyawRate were set to low values - suggesting

high trust in measurements. Resulting trajectory (Figure 6.1(a)) shows that the heading mea-

surement has a constant bias, caused by the error in initial heading measurement obtained by

compass. Thus, yaw measurement, calculated relative to previous value each time, propagates

1as it appears in algorithm equations
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(a) N/E localisation. Yaw was calculated by integrat-
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(b) Heading estimation. Biased yaw measurement not
being corrected due to high confidence in yaw measure-
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Figure 6.1: AUV localisation using EKF with high confidence in yaw measurement, SDyaw =
0.01rad ≈ 0.6◦. SDyawRate = 0.004 rad

s
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(a) N/E localisation. Yaw was calculated by integrat-
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being corrected.

Figure 6.2: AUV localisation using EKF with low confidence in yaw measurement, SDyaw =
0.2rad ≈ 11.5◦. SDyawRate = 0.004 rad

s
, SDu/v = 1 cm

s
.
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the error (bias). Biased yaw observation further on causes EKF localisation to experience sharp

jumps. To overcome this using EKF framework, less confidence was assigned to the yaw mea-

surement (SDyaw) value. Eventually, bias becomes visible if measured and filtered heading are

compared (Figure 6.2(b)). As for the rest of the heading information, rate of yaw measurement

will be incorporated with a lot of confidence (SDyawRate parameter having range of degrees)

since it is a reliable device and it does not depend on the initial estimate. Good feature of

sensor fusion is that lack of one measurement or its low performance can be compensated with

some other measurement considering that they are combined together in mathematical model

in the right manner. In case of yaw and yaw rate - the derivation in time is a relation that

connects them together.

Simulation shows that localisation performance can be tailored by setting the confidence

in prediction model or measurement values. Confidence is materialized as standard deviation

(variance) of the random variable: the lower it is, more certain the value of the random variable

is hence more confident in value of that variable we tend to be. Kalman filter tries to optimise

the result within the defined boundaries of uncertainty.

Unscented Kalman filter was mentioned in Section § 3.11.1 as a good alternative in handling

nonlinearities. UKF was implemented in MATLAB for the simulation purposes and its result

compared with the EKF localisation, under same parameter settings and using the real data

obtained from Nessie sensors. Test mission consisted of pipe tracking where the vehicle was

guided along the underwater pipe three times and each time returned back to the initial position

(Figure 6.3(a)). 2D north-east maps were compared, together with dead reckoning, same

as one used for previous simulations. General characteristics of UKF are visible from the

obtained shape of the UKF path (Figure 6.3(a)). Eventually, both filtered paths end up in

approximately same position, having less drift than the dead reckoning. EKF does first order

approximations, therefore, its path is slightly distorted compared with the UKF one, which

was obtained with the same amount of calculation, and the inherited approximation of at least

second order [24]. Simultaneously with filtering, UKF preserves the nonlinearity formula of

prediction model better - its curves have shape closer to equation-based dead reckoning curves.

Still, a question that is yet opened is whether we need to improve the approximation of the

prediction model. Answering this question is a hard task without knowing the movement of

the object and how much it actually matches the state prediction model. A difficulty with

UKF implementation is that it involves calculation of covariance matrix square root which is

a slightly more complex problem, solved with numerical methods. Nevertheless, it is possible

that covariance matrix becomes singular which also depends on parameter k used for scaling

(Section § 3.11.1). k was set to -0.5 for simulations shown.

Sensor fusion for heading: being in search for heading measurement less prone to

initial error, and guided by simulation results, real scenarios were accomplished using magnetic
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measurement by compass. Vehicle is not mov-
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(c) Compass disabled.
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(d) FOG disabled.

compass for heading measurement. Compass is more sensitive to magnetic disturbances (Figure

6.3(b)), slower than FOG but, importantly, gives an absolute measure. Therefore, it does not

rely on previous measurements. An experiment was made by just manually rotating the robot

horizontally while keeping the same position - changing its heading. Figures 6.3(d) and 6.3(c)

show the performance of yaw filtering using EKF and the example of sensor fusion of compass

and FOG. Namely, compass (Figure 6.3(c)) or FOG (Figure 6.3(d)) were disabled at one point

during the experiment. When one of them stops working, the other one tries to compensate

the failure.

Trajectory filtering: Spiral trajectory and surfacing action was taken with Nessie

starting from the depth of around 12 m. EKF estimation results are shown in Figure 6.4

together with LBL position updates and dead reckoning starting from each position. Similarly

as with previous plots, dead reckoning was shown together with LBL position updates. Filtered
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trajectory does not experience severe jumps, and the curve seems to be smoother and less prone

to drifting. Standard deviation of north and east measurement parameter (Table 6.1) was tested

with different values, causing more or less confidence in LBL measurement hence shaping the

filtered localisation curve.

LBL measurements exhibit quite diverse range of values. Causes of position correction errors

are numerous: from “multipathing” outliers (Figure 6.3) till the imprecision inferred from the

nature of volatile acoustic and GPS information. “Multipathing” causes outliers in position

information as a result of false reflections for instance. Acoustic and GPS imprecision can be

treated as Gaussian random variable.

B

A A

multipathing

Figure 6.3: Multipathing can cause outliers in LBL

position measurement. Due to reflection, several dis-

tances are detected, some being false measurements.

It is likely that some of the LBL po-

sition updates deviate from the trajec-

tory. Hence, a mechanism for reject-

ing the outliers was investigated. EKF

was tested on raw LBL position updates.

Intention is to manage the filtration of

the “outliers” by using properly tuned

EKF. Motivation to explore such possi-

bility comes from two scenarios encoun-

tered in earlier missions. In such mis-

sions position wad dead reckoned and

LBL was used to assign each time a new

value of north and east coordinate. LBL outliers were ruled out using a median filter applied on

the last eleven position coordinates once the latest LBL exceeded the set threshold in position

change. The missions showcased situations when:

• LBL rejection is carried out despite being a “false alarm” - Figure 6.4(a),

• rejection of the LBL is the right choice - Figure 6.4(b)

It is important to say that LBL position filtering was implemented in form of median filter.

EKF was updated with raw LBL data instead of median filter. Rejecting an LBL measurement

can turn out to be right (Figure 6.4(b)) as well as a wrong decision (Figure 6.4(a)). That is

why EKF was suggested as an alternative. Examples of EKF’s performance are shown in both

Figures 6.4(a) and 6.4(b). Solution is not as categoric as median filter. Moreover, it is more

robust. By giving certain trust in LBL observation it always takes it into account. Median

filter, on the other hand, can be too selective in being right or wrong. If it turns out that LBL

positions do follow each other, EKF continues slowly following that direction. If the outliers

are isolated, EKF successfully rules them out (Figure 6.4(b)).
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(b) Spiral trajectory: LBL outliers are rejected using me-
dian. EKF filtering introduces the position disturbance
which recovers soon after.

Square trajectories: square trajectories were tested in low depths of a lake, with the

GPS signal available to be used as a position reference and ground truth indication (Figures

6.4(c), 6.5 and 6.6). Dead reckoning navigation was used as a reference when controlling the

vehicle movement during the experiment. This fact can cause slight confusion in analysis of

the trajectory graphs since all the dynamics and forces were applied with respect to the dead

reckoning navigation which is an estimated value, not the real existing one. It is a slightly

inverse logic of testing, nevertheless further tests are yet to be accomplished. Emphasis of this

experiment was to show that EKF can work successfully and analyse the main characteristics

of the navigation design. It is likely that the GPS emulated square-shaped trajectories float as

the elapsed path becomes longer. GPS signal available from the antenna located on the water

surface is serving as a measure of absolute position within the lake - giving an idea about the

actual vehicle position while it tries to moves within the boundaries of estimated dead reckoning

position.

Main issue when performing the square trajectory tests was significant imprecision of GPS

signal. Many reasons can possibly influence the imprecision: from the weather conditions till

surrounding objects. Basically anything that can affect the satellite visibility and the quality

of the signal. Drifting can reach up to several meters which is unacceptable considering the

trajectory length. Finally, the trajectory of the experiment itself is quite short (≈ 10m) to be

seriously and accurately covered with precise GPS position update. Figures 6.4(c) and 6.4(d)

show the tested trajectory and depict the encountered amount of GPS imprecision.

Without GPS: EKF localisation was tested in given conditions. Initially, only motion

(inertial) sensors were used within the observations. That implies all the available linear and
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(c) Coordinates of the tested square trajectory pasted
on the lake map.
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(d) GPS signal as it appears originally when following
the square trajectory.

angular velocity sensors. Absolute position (raw GPS signal in this constellation) was not

included in observations. EKF periodically updates (synchronous mode, § 5), with the rate of

10 Hz. The aim was to measure the performance and the amount of drifting that occurs since

the robot is intended to repeatedly attain square-like paths and return to the starting position

in ideal scenario. It is useful to mention that proper parameter tuning can significantly change

filtering performance. By giving more or less trust in particular measurement, or particular

model behaviour, the role of certain parameters of dynamics (velocities, angular velocities) can

be emphasized if necessary. Figure 6.5 shows the performance of EKF without GPS position

correction after one trajectory cycle, and the original path that was followed, recorded using

GPS. Initial position was taken from the first GPS measurement and the first measurement

can indeed be away from the real position due to GPS imprecision. Note that the control of

the vehicle trajectory refers to dead-reckoning calculated north-east values, not some physical

beacons with known position. At the time of reporting the experiments, testing were not

fully completed with all the planned scenario variations. Localisation expectedly tends to

perform with a significant drift without the absolute position update (Figure 6.5(a)). After

the second square-shaped cycle (Figure 6.5(b)), EKF shows that it roughly tracks the shape

of the trajectory, smooths it by filtering out the measurement outliers. Vehicle has returned

approximately to the same position after each cycle. Drift gained when following one of the

sides of the rectangular path was compensated with the same amount of drift but of the opposite

sign that was active when taking the return direction. Enormous amount of drift is present

since the information on absolute position is not considered. The first available GPS coordinate
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Figure 6.4: Spiral trajectory and the trajectory estimation using EKF.
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(a) EKF localisation after one cycle.
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(b) EKF localisation after two cycles.

Figure 6.5: EKF localisation using only inertial measurements as observation.

fixes the starting position and part of the initial position error is caused by being incapable of

setting the initial position accurately.

With GPS: Finally, GPS measurements were appended to the EKF observations. Localisa-

tion results were shown in Figure 6.6 for two different level of confidence (variances) in position

measurement. Naturally, giving extremely high confidence does not seem to be the best choice,

however, some empirically deduced values in range of decimetres significantly correct the dead

reckoning drift. Furthermore, EKF tends to filter the GPS measured north east coordinates,

hence partially corrects the GPS imprecisions stated at the beginning. At this point it is evident



55 6.1 Real navigation scenario

−15 −10 −5 0 5 10 15 20

0

5

10

15

20

25

east [m]

n
o

rt
h

 [
m

]

 

 

gps

ekf

dead recon

(a) Setting standard deviation of 1 m in uncertainty
position observation (SDnorth = SDeast = 1.0 m).
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(b) EKF localisation after tuning the position uncer-
tainty (SDnorth = SDeast = 0.5 m).

Figure 6.6: EKF localisation aided with GPS position updates weighted by setting appropriate
parameters.

0 100 200 300 400 500 600
−200

0

200

y
a

w
 [

d
e

g
]

 

 

measured

filtered

0 100 200 300 400 500 600
−50

0

50

y
a

w
 r

a
te

 [
ra

d
/s

]

 

 

measured

filtered

0 100 200 300 400 500 600
−2

0

2

s
u

rg
e

 [
m

/s
]

 

 

measured

filtered

0 100 200 300 400 500 600
−5

0

5

 s
w

a
y
 [

m
/s

]

 

 

measured

filtered

Figure 6.7: Linear and angular velocities during square-shaped trajectory.
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why EKF is a great tool. Filter tries to satisfy the set uncertainty boundaries and fuse all the

available information trying to make the most out of it combined together in one mathematical

system. Moreover, fusing such imprecise and sketchy position data from GPS, still improves the

localisation. Obtained trajectory tends to go towards what can be treated as expected path.

From something that looked like a noisy collection of position observations at the beginning

(Figure 6.4(d)), application of EKF together with sensor fusion enabled having generally better

performance in navigation.



Chapter 7

Conclusions

The main focus of the work presented in the thesis is practical application of Extended Kalman

Filter (EKF) for Ocean System Lab’s Nessie AUV navigation module. EKF was designed

to estimate the location of an underwater robot by processing real-time inertial and position

information obtained from sensors. Furthermore, EKF algorithm was utilized as a framework

for accomplishing sensor fusion - blending together measurements from different sensors as a

part of the estimation process. Some principles of implementation for EKF-based localisation

that were already available in literature were adopted and modified into a five d.o.f. vehicle

model.

One of the issues that were addressed in the thesis was the suitable management of mea-

surement tasks among mounted sensor devices and the role of EKF in correcting deficiencies.

Specific case of heading measurement was tested, since this type of angular information is par-

ticularly important for the navigation. Usage of magnetic compass for obtaining heading is

possible, however needs serious and precise calibration of the compass on the location itself.

Advantage would be the possibility to make corrections based on absolute but quite noisy and

unstable heading information that can be filtered using EKF tuned to compensate for the mag-

netic compass inaccuracies. Due to calibration difficulties, most of the experiments use the

magnetic compass for initial heading, and EKF successfully appends the accurate heading rate

information obtained from gyroscope to compensate for the lack of absolute heading.

In conclusion, EKF proves to be useful navigation tool with satisfactory navigation perfor-

mance and several convenient features. Flexible with the number of sensors involved, capable of

successfully combining together different sensory information into a location estimate that tends

to be optimal with respect to set expectations, or recovering from the missing measurements,

corrupted position information, outliers, or signal noise. The issues with nonlinearity have been

addressed and the usage of Unscented Kalman Filter (UKF) tested on real data. Implemen-
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tation of UKF for localisation would improve the accuracy of approximating nonlinearities in

EKF at the same computational cost. However, this would have impact on navigation quality

in cases when process model is fairly similar to the real robot movement. Simply said - UKF

will tune up the emulation of the mathematical equations (prediction). If the prediction mode

has an important role in estimation, UKF will contribute. A possibility to test adopted UKF

that randomly takes samples is an idea to cope with filtering noisy position information such

as LBL’s “mutipathing” or imprecisions.

7.1 Future work

Future work on improving localisation performance involves more trials, particularly ones where

the true trajectory has been fixed to known landmarks, so that the results of localisation could

be thoroughly evaluated with trustful ground truth. Experiments that involve tilted vehicle

movements could make an evaluation of the influence of the 5th degree of freedom on the

quality of localisation. EKF could be improved so that it works with control inputs - which

could contribute in robustness of the localisation.

Finally, the problem of correcting the absolute position with LBL information gives space

for improvement since the measured position tends to be quite uncertain and prone to different

sorts of noise. Solution for rejecting outliers could rely on some version of back-filtering -

filtering based on history of received observations.
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