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Abstract— In order to accomplish various missions, au-
tonomous underwater vehicles (AUVs) need to be capable
of estimating their position within the environment. This
is a prerequisite of a successful mission since further
tasks strongly rely on navigation information. This paper
presents the application of an algorithm that would
accomplish the localisation of the Ocean Systems Lab’s
Nessie underwater vehicle using measurements from a
number of sensors mounted on it. Well known Extended
Kalman Filter (EKF) algorithm approach was suggested
as a solution for robot self-localisation. Additional prac-
tical issue that was addressed in the work is the choice of
heading sensor and quality of the obtained heading as an
important ingredient of the navigation. Implementation
of the Unscented Kalman Filter (UKF) was investigated
as potential improvement in working with nonlinearities.
Finally, the absolute position observations tend to be
quite noisy but very important measurements for naviga-
tion. EKF was demonstrated as a tool for sensor fusion
and simultaneous filtering of the position measurements.
Experiments with recorded real-time sensor data and
real missions have been carried out. Their results have
been presented as a part of navigation performance test
and analysis.

I. INTRODUCTION

This paper is reporting the application of EKF for
localisation of the above mentioned Nessie AUV in
an unstructured environment. The concept of sensor
fusion was explained. The main contribution is the
implementation of an EKF estimator adopted to work
on a real underwater vehicle with real-time signals re-
ceived from sensors. Five degrees of freedom (5DOF)
model of the vehicle dynamics was introduced to take
the role of the prediction. Work examines the problem
from the perspective of engineering a successful AUV
navigation in general. The issue of accurate heading
and the outliers in absolute position measurement was
analysed. Unscented Kalman Filter (UKF) [5] was
implemented as an attempt to improve the performance
and compensate for the shortcomings of the EKF.

Paper is organised as follows: section § II gives
an overview of AUV’s navigation capabilities. Section
§ III introduces the theory of EKF. Section § IV
briefly presents each of the measurement devices. Im-
plementation of the localisation module was detailed in
section § V. Finally, results are shown in section § VI
ending with conclusions and future work in section
§ VII.
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Fig. 1. Standard LBL: A - transponder, B - transducer. Acoustic
waves are exchanged between A and B. Detected “time-of-flight”
is used to estimate the distance between, hence the position in the
network of transponders.

II. NAVIGATION CAPABILITIES OF AUVS

Primary navigation system in most of the appli-
cations, including underwater navigation, is Inertial
Navigation System (INS) [7]. Motion and rotation
information obtained this way are processed in order to
provide an estimate of objects location with respect to
the initial reference. Since such system accumulates
noisy data, it introduces the drift errors that need
to be occasionally corrected inside the navigation
algorithm. Various ways of correcting those errors
were developed. Common “correction tool” is the
incorporation of an absolute position measurement in
form of GPS (§ IV) or acoustic acoustic based LBL
(§ IV) available underwater (Figure 1). Absolute
position is inferred from the acoustic feedback of
transponders so that the vehicle is capable of locating
itself with respect to transponder network. Carrying
out underwater vehicle localisation implies introducing
concepts such as vehicle state within a navigation
strategy framework. Vehicle navigation state describes
its position within the environment. Vehicle state is a
vector that contains variables relevant for localising the
vehicle. In this work, state vector is treated as stochas-
tic - consisted of random variables with Gaussian
distribution. As it is the case with random variables,
we can say that certain state has an expected value,
and that such “randomness” can be expressed with
the distribution formula, resulting in descriptor values
such as mean and standard deviation that fully describe
the distribution in particular case of Gaussian. Most
notable stochastic state estimator is Kalman Filter
(KF). KF works through iterations by employing the
process model for making the state prediction and the
observations for doing the state correction [8]. Real



world consists of various nonlinear systems. Practical
situations often demand the usage of approximations
that eventually lead to linearisation. EKF is a nonlinear
version of KF which linearises about the current mean
and covariance - hence uses analytic approximations.
UKF, on the other hand, is based on sampling [5]. Both
treat random variable as Gaussian.

III. EXTENDED KALMAN FILTER

System can be described with set of states that
evolve in time according to mathematical functions
that are usually nonlinear. Nonlinear state prediction
f() would use previous state estimate x̂(k−1), possi-
ble control input u(k) and mean value of the process
noise (0):

x̂(k | k − 1) = f(x̂(k − 1),u(k), 0) (1)

EKF is intended for solving sub-optimal state estima-
tion of a nonlinear system [4]. The main characteristic
of EKF is that it analytically approximates - linearises -
the process and measurement functions (f() and h()).
Linearisation implies approximating these functions
with their first derivative around current prediction,
similarly as the ordinary math functions are approx-
imated with Taylor polynomials of first degree. In
this case, derivation is slightly more complex since
model functions f() and h() take several input vectors
and output the resulting vector. Hence, the derivation
will consist of partial derivation of process per state
input vector (Equation 2) and per noise input vector
(Equation 3). Partial derivation of measurement func-
tion per state (Equation 4) and measurement noise
(Equation 5). Partial derivatives themselves will be
Jacobian matrices considering that vector is derived
per vector.

F (k) =
∂f

∂x
(x̂(k | k − 1),u(k), 0) (2)

W (k) =
∂f

∂n
(x̂(k | k − 1),u(k), 0) (3)

H(k) =
∂h

∂x
(x̂(k | k − 1), 0) (4)

V (k) =
∂h

∂m
(x̂(k | k − 1), 0) (5)

Subsequently, filtering process can be treated similarly
as classic, discrete linear KF (Algorithm 1). Process
model mathematically describes how the state changes
for the given input (Equation 1). Essential invention
in EKF algorithm is the linearisation of the given
function around current state mean and variance which
further results in estimation process similar to the one
described for linear KF [6].

IV. SENSORS

Underwater positioning can utilise different types of
sensors combined together in one system. The role of
the sensors is to measure absolute position, velocities
and heading/orientation. Sensor outputs measure with

Algorithm 1 The Discrete Extended Kalman Filter
Require: E{x(0)} = x(0) = x̂(0) {initialize state}
Require: P (0) = δjkP0 {initialize covariance}

loop
k ⇐ k + 1
x̂(k | k − 1) = f(x̂(k − 1),u(k), 0) {state
prediction}
P (k | k − 1) = F (k)P (k − 1)F T (k) +
W (k)QW T (k) {state prediction uncertainty}
ν = z(k)− h(x̂(k | k − 1), 0) {innovation}
S = H(k)P (k | k − 1)HT (k) + V (k)RV T (k)
{innovation uncertainty}
K = P (k | k − 1)HT (k)S−1 {“Kalman gain”}
x̂(k) = x̂(k | k − 1) +Kν {state correction}
P (k) = (I − KH(k))P (k | k − 1) {state
correction uncertainty}
return x̂(k),P (k)

end loop

reference either in body frame (Figure 3(b)), the
one fixed to the object or in global frame (Figure
3(a)). Basic navigation sensor set for a high-end AUV
usually consists of:
Pressure (depth) sensor is standard piece

of the equipment for an AUV. Measuring the pressure
enables the correlation of the value of pressure with
the value of depth. Device can frequently ascertain the
absolute depth with good precision, within the range
of centimetres.
Magnetic compass provides 3D vector of local

magnetic field. It’s main role is orientation measure-
ment, particularly heading (yaw). Magnetic compass
points at magnetic north. North direction as it appears
on maps points to the geographic north (“true north”).
That is the direction towards the rotation axis of
the Earth. Magnetic declination is an angle between
magnetic north (measured by compass) direction and
the true north direction (the one that maps refer to).
Depending on location where the compass is used,
magnetic declination can vary, hence, calibration is
necessary. In addition, different magnetic effects can
affect the measurement. Compass delivers absolute
measurement of heading, prone to noise.
DVL is intended to measure linear velocities.

Transceiver components mounted on the device, point-
ing downwards (towards the bottom) emit acoustic
impulses which are expected to be reflected and read.
In case reflectance exists, DVL is “bottom-locked” and
ready to measure.
FOG is based on measuring the interference of two

light beams that pass through a coiled optical fibre in
both directions. FOG provides quite precise informa-
tion on rotation as it delivers the angular information:
rate of change of heading (yaw rate).
GPS is a well known satellite-based navigation

system that provides position information anywhere on
the Earth surface or in the air, reasonably close to the
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Fig. 2. Sensor fusion diagram.

surface. Due to absorption of electromagnetic waves
in the water GPS signal is not available underwater.
Despite the fact that GPS is not available, vehicles are
equipped with GPS receiver intended to be used for
initial position information before submerging or for
occasional position updates if the vehicle temporarily
goes back to the surface. Precision of the GPS position
information can vary significantly [3]. Such huge devi-
ation can cause significant inaccuracies in navigation.
LBL is an acoustic positioning system which pro-

vides the absolute position, a ground-based reference.
LBL is used for measuring position with respect to
several tethered beacons with known position, placed
in water (Figure 1). LBL transceiver “pings” each
of the beacons and detects the signal travel time in
order to calculate their distance. It can be understood
as the extension of the GPS information below the
water surface. EKF fuses the measurements from all
the devices together: localisation algorithm collects the
incoming sensor information and computes the pose
of the vehicle by filtering the data cluster obtained
from sensor devices. Such procedure is regarded as
sensor fusion (Figure 2). Basic sort of sensor fusion
implementation is incorporated in navigation algorithm
by combining different quantities into a jointly updated
state vector with position, orientation and velocities
(§ V).

V. IMPLEMENTATION

Position, orientation and velocities of a vehicle
underwater are stored within the state vector. Proposed
solution for localisation uses state-space approach and
EKF to estimate the value of the state vector using
data from odometry sensors and acoustic positioning
system (LBL), if available. Reasons for choosing this
method are influenced by the application itself. Lo-
calisation is intended to work in unstructured environ-
ments, with no clear visibility, relying on kinetic and
absolute position measurements. Mathematical model
of the system is the integral part of the EKF. It is
used to define the state transition law by applying
well known kinematic equations which describe object
motion [11]. Constant velocity 5DOF kinematic model
is used as system model to predict the movements
of the submerged body [9]. States are predicted at
each time-step using the model f() and previous state
X(k − 1) (equation 6).

X(k) = f(X(k − 1),N(k − 1)) (6)
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(a) AUV positioning - global frame of reference.

east

depth

dz/dt = heave velocity
dx/dt = surge velocity

x

y

z

dy/dt = sway velocity

north

(b) AUV body frame - local coordinate system with
movement directions.

Fig. 3. AUV state vector values and five degrees of freedom.

Process model is used to describe the state transition
in time. In proposed discrete-time stochastic model,
5DOF include position values and two angle states:
yaw and pitch - making altogether five possible val-
ues to change in modelling vehicle position (figure
3(a)). Since the application uses state-space approach,
focus will be on defining a state vector that would
incorporate all the relevant values for the dynamic
system - kinematic and position variables. In spirit of
that, system state vector combines together metric and
angular values. At discrete time moment k, it values:

X(k) =
[
x y z a u v w ψ ϕ ψ̇ ϕ̇

]T
x takes the value of north (expressed in meters), y
is east and z is depth. a marks the altitude with u,
v and w standing for linear velocities: surge, sway
and heave velocity, respectfully. The rest of the state
vector covers angular values (expressed in radians or
degrees). ψ and ϕ are used as yaw and pitch, hence
describing the vehicle orientation. ψ̇ and ϕ̇ are angular
velocities: yaw rate and pitch rate, respectfully. The
state vector incorporates all the relevant information
necessary to describe the system under investigation.
Angle and velocity for pitch degree of freedom is
included in 5DOF system model since it can make a
difference in estimating vehicle location in cases of
tilted vehicle movement. Model uses previous state
and noise to make a prediction on the next state
vector value X(k) using non-linear function f() and
process noise vector N (Equation 6) where N =[
u̇ v̇ ẇ ψ̈ ϕ̈

]T
. Process noise models inaccu-

racies or unpredictable disturbances in motion model
[10]. To summarize, implementing vehicle localization
using EKF demands establishing two models: first one
describing the state evolution (system model) and the
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2 ) cos(ϕ)
u+ u̇T
v + v̇T
w + ẇT
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(a) EKF filters after each sensor measurement.
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Fig. 4. Two modes for combining together sensor measurements
into observation.

second model that associates noisy measurement with
the state (measurement model).

EKF (§ III) was chosen for the state estimation as a
logic choice being an algorithm that integrates together
different sensor measurements, makes a sub-optimal,
recursive state estimation and above all, is derived for
nonlinear systems [11]. The main feature of EKF is
that it linearises the system model and measurement
model nonlinear functions. System model is further
developed according to formulas 2, 3, 4 and 5.

Knowing plant model and deriving F (k), W (k) en-
ables EKF algorithm to complete the prediction stage
using known formulas. Next step is the correction of
the prediction using data obtained from measurement.
Measurement model introduces measurement equation
which establishes the connection between the measure-
ments and the target state (equation 8) where Z(k)
represents the measurement at time k, X(k) represents
state vector and M(k) represents noise. Purpose of the
measurement is to be able to update, correct the state
X(k) using measurements Z(k). h() is generally a
non-linear function. EKF linearises the measurement
model.

Z(k) = h(X(k),M(k)) = HX(k | k − 1) +M(k)
(8)

For this particular application and available sensor
configuration, state vector elements are measured di-
rectly, hence the measurement relation becomes equal-
ity. There is no need for partial derivation (Equation

8). Measurement noise is submitted in form of an
additive Gaussian zero-mean noise assigned to each
measured value. Measurement (observation) noise is
characterised with zero mean (E{M(k)} = 0) and
standard deviation (E{M(k)MT (k)}) given as diag-
onal covariance matrix with diagonal elements set to
constant filter parameter σ2 for each of the measured
values (Figure 9). It expresses how much we trust in
the measurement, how uncertain or varying measure-
ment of each of the state values is.

One of the features of the process is that measure-
ments are not available all the time. The reason is the
nature of the process of estimating the location itself.
Simply - messages from sensors arrive at different
moments and it happens that some of the sensors could
not be available due to different causes (no “dvl lock”,
for instance). The idea is to take all the available
information periodically and integrate it together in
measurement model, as a filter observation (Figure
4(b)). Alternatively, each message can be filtered upon
its arrival (Figure 4(a)). In case observation is empty,
filter does the prediction only. Idea for the solution has
been introduced in [9]. Some other implementations of
EKF for underwater navigation have reported the us-
age of similar strategy for merging the measurements
together [1], [2]. This way, measurement model adopts
to the set of the values observed.

Integrating together several different sensor-specific
measurements into one observation would imply
concatenating together several measurement matrices
(Z,H) and measurement noise matrices (R), as
shown in 9 for the sample case of two sensor device
measurements included in one observation. EKF main-
tains its own timer for the observations (value T from
the model). As an example, depth sensor measures
depth (z) and heave velocity (w), thus

Zdepth =
[
z w

]T
,

Hdepth =

[
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

]
and

Rdepth =

[
σ2
depth 0

0 σ2
w

]



Z(k) =

[
ZsensorI

ZsensorII

]
,H(k) =

[
HsensorI

HsensorII

]
,R(k) =

[
RsensorI 0

0 RsensorII

]
(9)

. Where σ marks the standard deviation expressing
how much we trust in measurement. It is given as
EKF parameter. Similar pattern values for the other
sensors depending on values that they measure. Having
more than one measurement involved in estimation of
the global state is a good characteristic. The estimate
which uses more diverse data gives better estimate
since it is possible to combine together more that one
sort of observation. Another advantage follows the fact
that the whole set of state variables is updated each
time, resulting in more correlation between variables.
Hence those that are missing for some reason can be
compensated this way. Results of simulations using
authentic data and the real missions are given in
Section § VI. Odometry integrates velocity and accel-
eration data collected from devices such as gyroscope
or accelerometers. Integration of noisy data over time
or usage of “relative measurements” (those calculated
from absolute measurements) results in drift or bias
of the final estimate. In order to recover from that,
algorithms perform the correction. Correction takes an
absolute measurement which should be less precise,
possibly noisy, but not prone to drifting.

VI. RESULTS

Nessie missions were carried out as a part of the
algorithm trials. It is useful to mention that there
is no exact ground truth for underwater robot lo-
calization available. GPS signal, if available, could
serve as an absolute position reference: either directly
or in form of LBL. Experimental results have been
obtained for different missions. Good news, how-
ever, is that the absolute depth measurement is quite
accurate and frequent, making AUV localisation a
2D task. For a high-end underwater vehicle such as
Nessie, main source of navigation error is influenced
by transformation of vehicle-referenced velocities to
world-referenced velocities, particularly due to yaw
(heading) measurement errors. Yaw can be measured
directly using magnetic compass or integrating FOG-
based yaw rates. Simulation with data from previous
missions was carried out to see which device gives the
best performance for a given underwater vehicle and
possibilities of improvement using sensor fusion. Dead
reckoning localisation substituted with occasional LBL
position updates was compared with the localisation
obtained after filtering (Figure 5) for the recorded
straight line trajectory mission.

Heading calculated by integrating FOG’s yaw rate
- tends to be accurate and fast, less prone to noise.
Nevertheless, it is calculated each time by appending
yaw rate value integrated in time on the previous
yaw value (relative measurement). Therefore, it is
sensible on initial absolute heading measurement. In
case initial yaw is imprecise, a constant bias exists in
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(a) N/E localisation. High confidence in yaw
measurement.
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(b) N/E localisation. Confidence in yaw mea-
surement lowered.
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Fig. 5. AUV localisation using EKF. Yaw was measured by
integrating yaw rate periodically measured using FOG.

yaw measurement (Figure 5(a)). Thus, putting high
trust in yaw measurement is not a recommendable
strategy. Eventually, after assigning less confidence
in yaw measurement (higher σyaw value), bias be-
comes filtered out if measured and filtered heading are
compared (Figure 5(c)). Tests show that localisation
performance can be tailored by setting the confidence
in prediction model or measurement values. Confi-
dence is materialized as the variance of the random
variable: the lower it is, more certain the value of the
random variable is hence more confident in value of
that variable we tend to be. EKF tries to optimise the
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Fig. 6. Spiral trajectory and the trajectory estimation using EKF.

result within the defined boundaries of uncertainty.
Trajectory filtering is shown in example of spiral

trajectory and surfacing action that was taken with
Nessie starting from the depth of around 12 m. EKF
estimation results are shown in Figure 6 together
with LBL position updates and dead reckoning starting
from each position. Similarly as with previous plots
LBL-aided-dead reckoning was shown together with
LBL position updates. Filtered trajectory does not
experience severe jumps, and the curve seems to be
smoother and less prone to drifting. Standard deviation
of north and east measurement parameters was tested
with different values, causing more or less confidence
in LBL measurement hence shaping the localisation
curve and managing filtering of the LBL outliers.

Rectangular trajectories were tested in low depths of
a lake, with the GPS signal available to be used as a
position reference and ground truth indication (Figure
7). Dead reckoning navigation was used as a reference
when controlling the vehicle movement during the
experiment. This fact can cause slight confusion in
analysis of the trajectory graphs since all the dynamics
and forces were applied with respect to the dead
reckoning navigation which is an estimated value. GPS
signal available from the antenna located on the water
surface is serving as a measure of absolute position
within the lake - giving an idea about the actual
vehicle position while it tries to moves within the
boundaries of estimated dead reckoning position. Main
issue when performing the square trajectory tests was
significant imprecision of GPS signal (Figure 7(a)).
GPS measurements were appended to the observations.
EKF and UKF localisation results were shown in
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(b) Filtered absolute position, linear velocities and heading recorded
while making a rectangular trajectory.

Fig. 7. GPS aided rectangular trajectory localisation using EKF
and UKF.

Figure 7(a) for σnorth = σeast = 0.5m. UKF was
compared with the EKF localisation, under same pa-
rameter settings and using the real data obtained from
Nessie sensors. Trajectory obtained using UKF tends
to be slightly more precise compared with the one
obtained using EKF. Since it is more precise algorithm
when approximating nonlinearity [5] , UKF preserves
the formula of prediction model better. EKF tends to
filter the GPS-measured north-east (N/E) coordinates,
hence partially corrects the GPS imprecisions. At this
point it is evident why EKF is a great tool. Filter tries
to satisfy the set uncertainty boundaries and fuse all
the available information trying to make the most out
of it combined together in one mathematical system.
Furthermore, fusing such imprecise and sketchy po-
sition data from GPS, still improves the localisation.
Obtained trajectory tends to go towards what can be
treated as expected path. From something that looked
like a noisy collection of position observations at the
beginning (Figure 7(a)), application of EKF together
with sensor fusion enabled having generally better
navigation performance.



VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The main focus of the work presented is practical
application of Extended Kalman Filter for Ocean Sys-
tem Lab’s Nessie AUV navigation module. EKF was
designed to estimate the location of an underwater
robot by processing real-time inertial and position
information obtained from sensors. Furthermore, EKF
algorithm was utilized as a framework for accomplish-
ing sensor fusion - blending together measurements
from different sensors as a part of the estimation
process. The issues that were addressed in the thesis
include suitable management of measurement tasks
among mounted sensor devices and the role of EKF
in correcting deficiencies. Specific case of heading
measurement was tested, since this type of angular
information is particularly important for the naviga-
tion. In conclusion, EKF proves to be useful navi-
gation tool with several convenient features: capable
of successfully combining together different sensory
information into a location estimate that tends to be
optimal with respect to set expectations, or recovering
from the missing measurements, corrupted position
information, outliers, or signal noise. Implementation
of UKF for localisation would improve the accuracy
of approximating nonlinearities in EKF at the same
computational cost.

B. Future Works

Future work on improving localisation performance
involves more trials with the vehicle trajectory fixed
to known landmarks, so that the results of local-
isation could be thoroughly evaluated with trustful
ground truth. Experiments that involve tilted vehicle
movements could make an evaluation of the influence
of the 5th DOF on the quality of localisation. EKF
could be improved so that it works with control
inputs - which could contribute in robustness of the
localisation. Finally, the problem of correcting the
absolute position with LBL information gives space
for improvement since the measured position tends to
be quite uncertain and prone to different sorts of noise.
Solution for rejecting outliers could rely on some
version of back-filtering - filtering based on history
of received observations.

VIII. ACKNOWLEDGMENTS

Author would like to thank VIBOT consortium and
European Commission for sponsoring.

REFERENCES

[1] M. Blain, S. Lemieux, and R. Houde. Implementation of a
ROV navigation system using acoustic/Doppler sensors and
Kalman filtering. In OCEANS 2003. Proceedings, volume 3,
pages 1255–1260. IEEE, 2003.

[2] L. Drolet, F. Michaud, and J. Côté. Adaptable sensor fusion us-
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