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Abstract
The study of neuronal morphology in relation to function, and the development of effective medicines to positively impact
this relationship in patients suffering from neurodegenerative diseases, increasingly involves image-based high-content
screening and analysis. The first critical step toward fully automated high-content image analyses in such studies is to detect
all neuronal cells and distinguish them from possible non-neuronal cells or artifacts in the images. Here we investigate
the performance of well-established machine learning techniques for this purpose. These include support vector machines,
random forests, k-nearest neighbors, and generalized linear model classifiers, operating on an extensive set of image features
extracted using the compound hierarchy of algorithms representing morphology, and the scale-invariant feature transform.
We present experiments on a dataset of rat hippocampal neurons from our own studies to find the most suitable classifier(s)
and subset(s) of features in the common practical setting where there is very limited annotated data for training. The
results indicate that a random forests classifier using the right feature subset ranks best for the considered task, although its
performance is not statistically significantly better than some support vector machine based classification models.
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Introduction

Neurons are special cells in the sense that they codify
and transmit information in the form of action potentials.
Networks consisting of many billions of neurons, such as in
the brains of higher organisms, are extraordinarily complex
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and perform many different functions. Since the pioneering
work of Ramón y Cajal (2007) it is well known that
the morphology of neurons vary widely in different parts
of the brain and that neuronal morphology and function
are intricately linked. Moreover, in healthy conditions,
neuronal (sub)networks within the brain are dynamic and
continuously readjust their connections during the lifetime
of an organism in response to external stimuli, in order
to refine existing functions or learn new ones (Ascoli
2015). Conversely, in pathological conditions, disease
processes destructively alter neuronal morphology and
cause progressive loss of function, such as in Alzheimer’s
and Parkinson’s disease, but also in aging (van Pelt et al.
2001). Thus the study of neuronal cell morphology in
relation to function, in health and disease, is of high
importance for developing suitable drugs and therapies
(Meijering 2010).

A convenient tool to visualize large numbers of cultured
cells for phenotypic profiling and analysis in drug discovery
is high-content fluorescence microscopy imaging (Xia and
Wong 2012; Antony et al. 2013; Singh et al. 2014; Bougen-
Zhukov et al. 2017). By automated acquisition it produces
very large amounts of image data, which cannot be analyzed
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manually but require automated high-content analysis
(HCA) in order to take full advantage of all captured
information. HCA is also used increasingly in neuroscience
research (Dragunow 2008; Anderl et al. 2009; Jain et al.
2012) and various image processing pipelines have been
developed for quantitative analysis of neuronal cells in high-
content images (Vallotton et al. 2007; Zhang et al. 2007; Wu
et al. 2010; Dehmelt et al. 2011; Radio 2012; Charoenkwan
et al. 2013; Smafield et al. 2015). However, especially in
screening applications, where the image quality is often
relatively low and may vary widely between experiments,
the challenge remains to develop more accurate and more
robust image analysis methods (Sommer and Gerlich 2013;
Kraus and Frey 2016; Meijering et al. 2016).

The first critical step in any HCA pipeline is the
detection of the objects of interest in the images. It is
well recognized now in many areas of microscopic image
analysis that machine learning based classification methods
are an excellent choice for this task and typically outperform
non-learning methods based on manually defined rules
(Horvath et al. 2011; Sommer and Gerlich 2013; Kraus and
Frey 2016; Arganda-Carreras et al. 2017). However, which
classifiers work best, and on which sets of image features,
may depend on the specific image data and detection task,
and needs to be determined experimentally before using
HCA on a routine basis in a given application.

In this paper we investigate the performance of machine
learning methods for the specific task of detecting neuronal
cells in high-content fluorescence microscopy images as a
first step toward fully automated HCA in our neuroscientific
studies. We recently presented an early version of our work
at a conference (Mata et al. 2016) and report here on a
significant extension of that work including more classifiers,
more extensive experiments and results, and a much deeper
and more solid (statistical) analysis and discussion of the
findings. We explore classifiers based on precalculated
image features in order to determine which combinations of
classifiers and features work best in a practical setting where
there is very limited annotated data for training. Specifi-
cally, we consider various state-of-the-art classifiers based
on support vector machines (SVM), random forests (RF),
k-nearest neighbors (KNN), and generalized linear models
(in particular GLMNET), operating on more than a thou-
sand image features extracted using the compound hierarchy
of algorithms representing morphology (CHARM) and the
scale-invariant feature transform (SIFT).

Materials andMethods

To facilitate reproducibility of our study we made use
of published image data and employed publicly available
software tools. Here we successively describe the image

dataset, the used methods for extracting image features, and
the considered machine learning methods.

Image Dataset

The high-content image data used in this study is from our
ongoing research into effective treatments for neurological
disorders (Cuesto et al. 2011; Enriquez-Barreto et al. 2014;
Enriquez-Barreto and Morales 2016). We describe the
acquisition of the images, their annotation, and the strategy
we used to obtain a well-balanced dataset for training of the
machine learning algorithms.

Image Acquisition

Rat hippocampal neurons were cultured and transfected
with green fluorescent protein (GFP) and imaged with a
Leica SP5 automated confocal fluorescence microscope
using its Matrix modules and a 20× lens. The imaged
neurons, coming from a part of the brain (the hippocampus)
that is well known to be involved in higher functions such
as learning and memory (Squire 1992), typically have a
pyramidal soma with a complex dendritric tree (Goslin
et al. 1998), and their in-vivo morphological features are
well conserved in culture conditions. We acquired eight
two-dimensional (2D) high-content images (total size >1
GB), each with a size of about 10,000 × 12,000 pixels,
covering approximately 70 mm2 of culture dish. Each image
is a mosaic made up of tiles of size 1024 × 1024 pixels,
automatically acquired and stitched using the Leica Matrix
module. Prior to imaging, the user has to select the desired
culture area within the field of view, and the module
calculates the tiles to be imaged in order to cover the
chosen area, considering 10% overlap between neighboring
tiles. Each mosaic contains on the order of 40 transfected
neurons (Fig. 1). Our specimens usually have about 100
neurons, but more than half of them are not or only partly
imaged, as they are in different optical planes or close to
the borders of the dish, making the automated detection of
relevant image structures (complete neurons) as opposed to
irrelevant image structures (incomplete neurons, astrocytes,
and artifacts) quite challenging.

Image Annotation

To obtain a reference dataset for training and testing of
the machine learning methods, an expert neurobiologist
manually marked all the regions of interest (ROIs)
containing neurons in these images, about 400 in total.
We established that relevant neurons typically cover an
area of around 500 × 500 pixels in our images and
therefore we fixed the ROI size to these dimensions.
Using the same window size, we automatically sampled
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Fig. 1 Part of a high-content fluorescence microscopy image (a) where
the blue squares highlight some example patches containing neu-
ronal structure and the magenta squares depict some example patches

containing background. These squares are enlarged in (b) and (c) for
a better visualization. The intensities of the shown images are inverted
compared to their originals for displaying purposes

additional patches from the remaining parts of the images,
containing all different types of irrelevant image structures.
More specifically, to ensure evenly distributed sampling of
background patches across the images, we defined a regular
grid and included every patch from the grid having less
than 50% overlap with any of the neuron ROIs marked
by the expert, resulting in approximately 4,500 non-neuron
patches. In the sequel we refer to the neuron ROIs as
‘positives’ and the non-neuron image patches as ‘negatives’
(Fig. 1).

Dataset Balancing

Due to the sparseness of our image data, the patches of
the negative class far outnumbered those of the positive
class, with a ratio of approximately 10:1, resulting in an
imbalanced dataset. It is well known that the performance
of classification algorithms may be negatively impacted by
the data being imbalanced (Chawla et al. 2004; Daskalaki
et al. 2006; Forman and Scholz 2010; Branco et al. 2016),
as the algorithms may overfit the majority class and underfit
the minority class, and favor the former, yielding biased
results (Garcı́a et al. 2014; Li et al. 2018). Approaches to

deal with class imbalance can roughly be divided into two
categories (He and Garcia 2009; Krawczyk 2016; Haixiang
et al. 2017): data-level approaches, which modify the
collection of data samples to balance the class distributions,
and algorithm-level approaches, which modify the learning
algorithms to alleviate their bias, for example by introducing
costs to balance the importance of the different classes.
Since in our case the class imbalance was substantial,
and we used mostly existing algorithms and aimed to
evaluate their performance without tweaking them for our
application, we opted to oversample the minority class in
order to obtain approximately the same number of samples
in each class. To this end we employed the popular synthetic
minority oversampling technique (SMOTE) (Chawla et al.
2002) of which several variants exist (Sáez et al. 2015;
Krawczyk 2016; Gosain and Sardana 2017). Specifically,
for each neuron ROI marked by the expert, we also
considered as potential positive samples all patches having
at least 50% overlap with that ROI (Fig. 2). However, the
higher the overlap percentage of a patch, the higher the
relevance of that patch, as it contains more neuron structure.
Therefore, we assigned a weight to each potential patch
corresponding to the overlap percentage, and taking this
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Fig. 2 Two example neurons with their expert-marked ROIs (black
squares) and their potential alternative positive patch locations (gray
regions). The latter comprise all possible top-left corner positions of
patches with the same size as the given ROI and having 50% or more
area overlap with that ROI

into account we randomly sampled from the pool of all
potential patches in order to avoid bias (Fig. 3). This resulted
in a positive class and a negative class each consisting of
approximately 4,500 samples in total.

Images Features

To train the machine learning algorithms we used a large
number of predefined features extracted from the positive
and negative image patches. In this study two very compre-
hensive feature extraction approaches were employed: the
compound hierarchy of algorithms representing morphol-
ogy (CHARM) and the scale-invariant feature transform
(SIFT). Here we briefly describe each of them. In the train-
ing stage of the machine learning algorithms, feature values
were normalized to zero mean and unit variance per feature
over the whole data set, and constant features were pruned.

CHARM Features

For the extraction of the CHARM features we used the
open-source software library WND-CHARM (Shamir et al.
2008; Orlov et al. 2008), which has been successful for
many pattern recognition applications in biology (Shamir
et al. 2010; Uhlmann et al. 2016) as well as in astronomy
(Shamir 2012a; Kuminski et al. 2014) and in art (Shamir
and Tarakhovsky 2012b). It can extract a large number

Fig. 3 Example of positive patch oversampling. The background
shows a high-content fluorescence microscopy image (with intensities
inverted), and the graphical overlay shows the neuron ROIs marked
by the expert (yellow squares), the top-left corners of the patches
randomly sampled from all possible patches considered as alternative
positives (red dots), and the intersection points (blue dots) of the
regular grid used for negative patch sampling (“Image Annotation”)

of generic image descriptors and also includes a classifier
based on the weighted neighbor distance (WND) between
feature vectors. However, since the performance of this
classifier was rather limited in our initial results (Mata
et al. 2016), we decided to explore alternative machine
learning algorithms for our classification task, but using the
image features calculated by this sofware library. In total
we calculated 1,059 CHARM features for each positive
and negative patch (recent versions of WND-CHARM can
extract even more features but at an increased computational
cost).

The calculated image features can be divided into
four categories: polynomial decompositions, high-contrast
features, pixel statistics, and texture descriptors. The
first category includes features based on the Zernike
polynomials and Chebyshev polynomials (Gradshteyn and
Ryzhik 1994) as well as Chebyshev-Fourier statistics.
Features from the second category include various statistics
calculated from the Prewitt edges (Prewitt 1970), Gabor
wavelets (Gabor 1946), and object masks obtained by Otsu
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thresholding (Otsu 1979). The third category consists of
image features calculated from the multiscale intensity
histogram (Hadjidementriou et al. 2001) and various
statistics based on the image moments. The last category
includes the Haralick et al. (1973) and Tamura et al. (1978)
texture features. In addition, the software calculates various
image transforms, including the Radon, Fourier, wavelet,
Chebyshev, and edge transforms, as well as transforms of
image transforms. For more technical descriptions of all
features and transforms we refer to Orlov et al. (2008).

SIFT Features

The SIFT algorithm (Lowe 2004) is another popular tool
to extract meaningful features from images for pattern
recognition tasks. It has been used for a very wide range of
applications in thousands of studies, including in biomedical
image analysis (Ni et al. 2009; Jiang et al. 2010; Mualla
et al. 2013; Zhang et al. 2013; Lee et al. 2016; Yu
et al. 2016). The extraction of SIFT features from a patch
consists of four main steps. First, a Gaussian scale space is
calculated, and potentially interesting points are identified
by searching over all scales and locations for extrema
in the difference-of-Gaussian function. Next, key points
are selected from this list of candidates based on their
measures of stability, and their precise location and scale
are determined by model fitting. Then, based on the local
gradient directions, each key point is assigned to one or
more orientations (binned angles). And lastly, orientation
histograms are constructed from the local gradients in a
region around each key point, relative to the key point’s
assigned orientation, and the histogram entries constitute
the elements of a (typically 128-dimensional) feature vector.
By normalizing the feature vector we obtain a key point
descriptor that is relatively invariant to spatial distortions
and changes in illumination. All key point descriptors of
a patch taken together form the SIFT features of that
patch.

A problem in comparing image patches based on their
SIFT features is that the number of key points, and thus
the number of descriptors, may be different for each patch.
The comparison is facilitated by applying a transform that
represents each patch by a feature vector of fixed length
(Yang et al. 2009). A very effective and popular approach
to achieve this is to use the bag-of-words (BoW) model
(Fei-Fei and Perona 2005). Here, all descriptors of all
available patches are divided into a fixed number of clusters
by k-means clustering (MacQueen 1967), and the mean
of each cluster represents a visual ‘word’, a vector of
the same dimensionality as the descriptors. Subsequently,
for any given patch, each of its descriptors is assigned to
the single cluster to which it is closest according to the
Mahalanobis distance. Such mapping yields a histogram

vector of fixed length k, with each vector element being the
number of patch descriptors assigned to the corresponding
cluster.

To obtain the SIFT-BoW feature vector for each
positive and negative patch, we used the VLFeat software
library (Vedaldi and Fulkerson 2008) in conjunction with
MATLAB (MathWorks 2016). The vector length is a user
parameter, and we evaluated the classification performance
of the different machine learning algorithms for lengths of
20, 40, 60, 80, 100, 150, 200, and 230.

Machine Learning

Four different machine learning algorithms were considered
for the classification task in this study. We summarize
the algorithms and their hyperparameters, and explain the
resampling strategies we used in the training and testing of
the algorithms, and the feature selection approach.

Classification Algorithms

Support Vector Machines (SVM) are one of the best
known and most successful machine learning algorithms
for both classification and regression problems (Boser et al.
1992; Vapnik 1998, 1999; Bishop 2006). In classification
problems, the principal aim of SVM is to find the
hyperplane in the feature space that best separates the
given samples (in our case neuron and non-neuron patches),
by maximizing the distance between the samples and the
hyperplane (Burges 1998). If the problem requires more
complex (nonlinear) separation functions, SVM can still
be used, by employing so-called kernel functions that
transform the high-dimensional feature space such that
a hyperplane (linear) can still be used as the separation
function. Generally speaking one could interpret a kernel
as a similarity measure (Vert et al. 2004). Different types
of kernels have been proposed, the Gaussian radial basis
function (RBF) being one of the most popular (Cristianini
and Shawe-Taylor 2000). Two hyperparameters need to
be optimized for best performance, one related to the
SVM algorithm itself, the other related to the Gaussian
RBF kernel. The first (‘cost’) is the trade-off between
the misclassification of the samples and the simplicity of
the decision surface. The second (‘gamma’) is the free
parameter of the Gaussian function. In the grid search in
our experiments we considered values 2k for integer k =
−12, . . . , 12 for both parameters.

Random Forest (RF) is another well-known and successful
machine learning algorithm (Breiman 2001) for classifica-
tion and regression. As a classifier it operates by randomly
taking multiple bootstrapped subsets of the data, fitting a
decision tree to each one of them, and outputting the mode

257(2019) 17:253–269Neuroinform



of the class outputs of the individual trees. This approach
reduces the possibility of overfitting the training dataset and
generally produces more accurate results than a single deci-
sion tree. The RF has two main hyperparameters. The first
(‘node size’) is the minimum size of the terminal nodes of
the decision trees. In our experiments we considered integer
values of 1. . . 5 for this parameter. The second (‘mtry’) is
the number of features randomly sampled as possible candi-
dates at each split. For this parameter we considered integer
values of 5. . . 36.

k-Nearest Neighbor (KNN) classification operates by com-
paring an unclassified patch to patches with known class
labels (the reference set), then selecting the k most sim-
ilar of these patches (the nearest neighbors) according
to some distance metric in the feature space, and out-
putting the most frequently occurring class label of these
patches (Cover and Hart 1967). In this study we used
a weighted KNN algorithm (Hechenbichler and Schliep
2004; Samworth 2012) which employs the Minkowski dis-
tance and classifies patches using the maximum of summed
kernel densities. This algorithm uses kernel functions to
weigh the neighbors according to their distances. The
KNN algorithm requires optimization of only one hyper-
parameter (‘k’), for which we considered integer values of
3. . . 9.

Generalized Linear Model (GLMNET) via penalized max-
imum likelihood (Friedman et al. 2010) is a regularized
statistical model whose response variable is a Bernoulli
indicator used for classification. It is based on the least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani
1996). Similar to LASSO, this method simultaneously per-
forms automatic feature selection and continuous shrinkage
(regularization), and is able to select groups of correlated
features. Specifically, GLMNET combines l1 and l2 penal-
ties for regularization, and has two hyperparameters. The
first (‘alpha’) is in the range [0, 1] and linearly weighs the
contributions of the different types of penalities, with value
0 corresponding to l2 regularization, and 1 to l1 regular-
ization. In our experiments we used values 0, 0.15, 0.25,
0.35, 0.5, 0.65, 0.75, 0.85, and 1. The second parame-
ter (‘lambda’) determines the degree of regularization, for
which we considered values of 0.0001, 0.001, 0.01, 0.1,
and 1.

For our experiments we used the statistical computing
software tool R (R Core Team 2016) and the R packages
mlr (Bischl et al. 2016), e1071 (Meyer et al. 2017),
random-Forest (Liaw and Wiener 2002), kknn (Schliep and
Hechenbichler 2016), and GLMnet (Friedman et al. 2010),
to evaluate all the machine learning algorithms. Most of the
result plots presented in this paper were generated using the
R package ggplot2 (Wickham 2009).

Resampling Strategies

The mentioned hyperparameters of the machine learning
algorithms need to be optimized for best performance. To
accomplish this, and at the same time make an honest
comparison of the algorithms under equal conditions, we
used a nested resampling approach (Simon 2007; Bischl
et al. 2012) involving an inner loop and an outer loop.
In this approach, the actual performance assessment of
the algorithms takes place in the outer loop, which we
implemented as three independent runs of a 10-fold cross-
validation experiment, with stratification (to ensure having
the same proportion of positive and negative samples
in all partitions of the cross-validation), where the final
performance scores are obtained by aggregation. In each
iteration of the outer loop, the corresponding training set
is used in an inner loop, to find the optimal values of
the hyperparameters of the algorithms. The inner loop
was implemented using a holdout approach, where the
given training set from the outer loop is redivided into
a training subset (2/3rd of the set) and a validation
subset (1/3rd of the set), and a grid search is run on
the hyperparameters. The hyperparameter values that give
the best performance are subsequently used to retrain
the algorithms on the given training set from the outer
loop. This nested resampling strategy is statistically sound
but computationally expensive. To make the experiments
computationally feasible, we discretized the search space
using the hyperparameter values listed in the previous
section.

Feature Selection

Although a priori it is appropriate to consider as many
features as possible, and increasing computational power
allows us to construct larger and larger feature sets, in the
end many features may be irrelevant or may even negatively
impact the performance of the machine learning algorithms.
Thus we also aimed to investigate which of all considered
features positively contribute most to the performance
of the algorithms in our application. Knowledge of the
best features allows one to build potentially better and
computationally more efficient classifiers. Moreover, it may
shed light on which image information is most relevant to
the classification task, which in turn may provide useful
hints to improve the imaging process. There exist various
approaches for feature selection using machine learning
algorithms in supervised classification problems, including
filter, wrapper, and embedded approaches (Saeys et al.
2007). In this study we used the filter approach, as it is
independent of the classifier, fast, scalable, and needs to be
applied only once, after which the different algorithms can
be evaluated.
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Experimental Results

All experiments in this study were carried out using the
BioCAI HPC cluster facility at the University of A Coruña.
To quantitatively assess and compare the performances of
the machine learning algorithms we used the area under the
receiver operating curve (AUROC) measure as it captures
both Type I and Type II errors (Fawcett 2006). We first
performed an initial exploratory experiment on various
combinations of CHARM and SIFT feature sets to find
out which of these deserved closer investigation. Using
the most promising feature sets we conducted an in-depth
performance evaluation of all the algorithms. Subsequently
we investigated which specific features of the complete
set contributed most to the performance. And finally we
performed an analysis to see whether the differences in
performance of the algorithms were statistically significant
or not.

Initial Exploratory Results

For the initial experiment we constructed 17 different
feature sets from (combinations of) the CHARM features
and the SIFT features: CHARM features only (one set),
SIFT features only (eight sets, one for each of the eight
BoW vector lengths), and the union of CHARM and SIFT
features (eight sets). To avoid prohibitive computation times
in the cross-validation experiment (described next), we first
explored which of these feature sets would likely yield
the best classification results with the considered machine
learning algorithms. The feature sets were preprocessed by
normalizing each feature to zero mean and unit standard

deviation over all patches, and removing constant features
(if present), to reduce the effect of possible outliers. To make
this exploratory experiment more computationally feasible,
we used a simpler resampling strategy than described,
namely a single 10-fold cross-validation in the outer loop,
and a holdout approach in the inner loop. In the latter,
the optimal hyperparameters of the classification algorithms
were obtained using a grid search on 2/3rd of the training
set of the outer loop, and validated on the remaining
1/3rd.

From the results (Fig. 4) we observe that both the
absolute and the relative performance of the classifiers was
quite different for the different feature sets. Specifically,
for SVM and KNN, the best results were obtained with
the SIFT features alone (for sufficiently large BoW vector
lengths), while the CHARM features alone produced
inferior results, and with the combination of CHARM
and SIFT features these classifiers performed somewhere
in between. For RF and GLMNET, on the other hand,
the SIFT features alone yielded inferior results, and with
the CHARM features alone these classifiers did not fare
much better, but the combination of CHARM and SIFT
features (for all BoW vector lengths) produced the best
results.

Thus we concluded that the cross-validation experiment
should include both the CHARM and SIFT feature sets
alone, as well as their combination, and the only way
to reduce the computational cost of that experiment was
to select a specific SIFT-BoW vector length. Overall, the
results seemed to indicate that in most cases it is better to
use larger vector lengths, and simply taking the maximum
considered length (230) is a good choice.

Fig. 4 Results of the initial
exploratory experiment. Each of
the considered classifiers (SVM,
RF, KNN, GLMNET) was
evaluated for each of the
described 17 feature sets
according to the performance
measure (AUROC) using the
described simplified resampling
strategy
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Cross-Validation Results

Based on the results of the initial exploratory experiment we
selected three feature sets, corresponding to CHARM fea-
tures only, SIFT230 features only, and CHARM+SIFT230
features, to evaluate the four machine learning classifiers
using a cross-validation experiment, involving an outer
loop (3 × 10-fold) for performance assessment and an
inner loop (holdout) for hyperparameter optimization as
described. The results (Fig. 5) show that virtually all clas-
sifiers achieved AUROC values of >95% and, generally,
SVM and RF outperformed KNN and GLMNET. Consider-
ing the different feature sets, we observe that all classifiers
except RF achieved better performance with the SIFT230
feature set than with the CHARM feature set. This is
interesting since the latter is much more extensive (1,059
features of many different types) than the former (230
BoW clusters). Apparently the SIFT230 features are more
descriptive of the image content in our application. This is

confirmed by the results with the CHARM+SIFT230 fea-
ture set, which are consistently better than with the CHARM
feature set alone. However, whereas RF and GLMNET per-
formed best using the more extensive CHARM+SIFT230
set, SVM and KNN performed best using the SIFT230 set
alone. Overall, the best results were obtained with the SVM
classifier using the SIFT230 feature set, although SVM and
RF using the combined CHARM+ SIFT230 features per-
formed comparably (we discuss statistical significance in
“Statistical Analysis Results”).

Feature Selection Results

Next we subjected the complete CHARM+SIFT230 feature
set to a feature selection experiment. Specifically, we
wanted to find out which features contributed most to
the performance of the different classifiers, and whether
these features alone could yield similar or even better
classification performance than using the complete set, as

Fig. 5 Results of the cross-
validation experiment. Each of
the considered classifiers (SVM,
RF, KNN, GLMNET) was
evaluated for each of the
selected feature sets (CHARM,
SIFT230, CHARM+SIFT230)
using the performance measure
(AUROC). The results are
shown as violin plots, where the
horizontal bar indicates the
median value, the vertical extent
is the interquartile range, and the
width indicates the estimated
probability density
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that would make the classification task computationally
cheaper.

To this end we ranked all 1,289 features using a CForest
test (Strobl et al. 2009) and considered four subsets,
consisting of the top 25, 100, 200, and 600 features. The
results (Fig. 6) agree with those of the previous experiment
in that SVM and RF consistently outperformed KNN and
GLMNET for all feature subsets. We also observe that the
larger the number of top features, the better the performance
of all four classifiers, but for most of them there was
little improvement beyond the top 200 features. In fact,
the scores of the best performing classifiers, SVM and RF,
were very similar for the CHARM+SIFT230:200 subset and
the full CHARM+SIFT230 set, and with smaller standard
deviations (we discuss statistical significance in “Statistical
Analysis Results”). This indicates that the non-selected
features provided noise rather than useful information to the
classifiers.

Analyzing the types of features contained in the four
subsets (Fig. 7), we note that the top 25 subset is dominated
by the SIFT features and the Zernike coefficients from
CHARM, whereas the top 100, 200, and 600 subsets
include many other types of features (about twice as many),
in roughly similar proportions. These additional features
contribute important information to the classification
process, as follows from the fact that the performance of
the larger subsets is considerably better than that of the top
25 subset. However, the reasons why these specific types
of features are dominant, elude us. According to the feature
selection results (Fig. 6), the best performing classification
model is the RF using the CHARM+SIFT230:600 feature
subset (AUROC = 0.9784), followed very closely by

the SVM using the CHARM+SIFT230:200 feature subset
(AUROC = 0.9783). Studying the importance of the features
in the former model according to the Gini index (Breiman
2001), we observe (Fig. 8) that the most important features
are indeed from the SIFT set together with the Zernike
coefficients from the CHARM set. Other important top
features from the CHARM set in decreasing order include
the Tamura and Haralick textures, multiscale histograms,
combined moments, and others (Fig. 7).

Statistical Analysis Results

Finally we analyzed the statistical significance of the
results (AUROC values) of the considered classification
algorithms on the selected feature (sub)sets, to see if any
particular model (combination of features and classifier
with corresponding optimal hyperparameters) is to be
preferred for our application. There exist mainly two types
of statistical test to do this: parametric and non-parametric.
Although parametric tests can be more powerful, they
require normality, independence, and heteroscedasticity of
the data (Fernandez-Lozano et al. 2016). To check the
first condition, we used the Shapiro-Wilk test (Shapiro and
Wilk 1965) with the null hypothesis that our data follows
a normal distribution, and we rejected the null hypothesis
with very significant values of W = 0.97324 and p <

2.723 · 10−11 (see also the Q-Q plot in Fig. 9). Since this
already disqualifies parametric testing, there was no need to
check the other conditions.

Thus we used a non-parametric test, the Friedman test
(Friedman 1940), which is known to yield conservative
results in the case of relatively small numbers of algorithms

CHARM+SIFT230:25 CHARM+SIFT230:100 CHARM+SIFT230:200 CHARM+SIFT230:600
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RF KNN

GLMNET
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RF KNN
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Fig. 6 Performance (AUROC) of the considered classifiers (SVM, RF,
KNN, GLMNET) for different feature subsets (the top 25, 100, 200,
and 600 features from the CHARM+SIFT230 set). The results are

shown as violin plots, where the horizontal bar indicates the median
value, the vertical extent is the interquartile range, and the width
indicates the estimated probability density
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Fig. 7 Cumulative percentages
of the different types of features
contained in the four subsets
(the top 25, 100, 200, and 600
features selected from the
CHARM+SIFT230 set)
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and datasets (Garcı́a et al. 2010). We used the null
hypothesis that all models yield the same performance on
our data, and we rejected it with very significant values of
χ2 = 657 and p < 2.25 · 10−10. Since this means that
at least some models are statistically significantly better or
worse than others, we subsequently tested for significant
differences between all pairs of models using the post-hoc
Finner test (Finner 1993), with the control model being
the RF classifier using the CHARM+SIFT230:600 feature
set, as it performed best in the feature selection experiment
(Fig. 6).

The results (Fig. 10) show that several other models
performed statistically similar to the control model.
These include the SVM classifier using the SIFT230
feature set or the top 100, 200, or 600 features of the
CHARM+SIFT230 set. Other statistically similar models
include the RF classifier using the CHARM+SIFT230
feature set, or just the top 100 or 200 features of the latter.
None of the models based on the KNN and GLMNET
classifiers performed statistically similar to the control
model.

Discussion and Conclusions

Our goal with the presented study was to find out which
machine learning based classification algorithms and which
commonly used feature extraction algorithms would be
most suited for the task of detecting neurons in high-content
fluorescence microscopy image data typically acquired in
screening experiments. To this end, we considered four
popular classifiers (SVM, RF, KNN, GLMNET) and two
popular feature extraction tools (CHARM and SIFT), and
performed various experiments and statistical analyses to
narrow down and compare the many possible models
(combinations of classifiers and (sub)sets of features).

From the results we conclude that of all considered clas-
sifiers, SVM and RF generally work best, provided they are
fed with the right sets of features. We observed statistically
similar performance with the following models: SVM using
SIFT (230 features), SVM using CHARM+SIFT (the top
100, 200, or 600 features), and RF using CHARM+SIFT
(the full 1,289 features or only the top 100, 200, or 600
features). In the course of our study we have also explored
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Fig. 8 The 50 most important features from the CHARM+SIFT230:
600 feature subset used by the best performing classifier. Importance
was calculated according to the Gini index of the RF classifier. The

importance value for each feature was averaged over all runs and folds
of the cross-validation experiment

the potential of several alternative features, such as the
histogram of oriented gradients (HOG) (Dalal and Triggs
2005) and spatial pyramid matching (SPM) (Lazebnik et al.
2006) based on sparse coding (ScSPM) (Yang et al. 2009),
but the results were not as good.

In the spirit of Occam’s razor principle (Iacca et al. 2012;
Hong et al. 2013; Ebrahimpour et al. 2017), which considers
the simplest explanation of natural phenomena to be the
closest to the truth, we have sought the smallest possible
classification model capable of determining with high
accuracy whether or not a new unseen image patch contains

neuron structures. Generally speaking, in order to achieve
good generalization in a classification task, it is required
to have a sufficient number of samples and to minimize
model complexity (Gupta et al. 2017). Since currently
our data is rather limited, we started out by considering
state-of-the-art classification algorithms requiring explicit
calculation of features, and using state-of-the-art algorithms
for extracting a very wide variety and large number of
features. In the future, when more annotated data becomes
available in our studies, we expect deep learning approaches
to be good and possibly superior alternatives, as they have
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Fig. 9 Quantile-quantile (Q-Q)
plot of the theoretical normal
distribution and our data
samples. Clearly, the computed
values (small circles) deviate
substantially from a straight line
(the solid line is the least
squares fit) and reveal a
nonlinear relationship, leading
to the conclusion that our data is
not normally distributed

been very successful in many other applications (Bianchini
and Scarselli 2014; LeCun et al. 2015; Greenspan et al.
2016; Tajbakhsh et al. 2016; Shaikhina and Khovanova
2017; Litjens et al. 2017; Shen et al. 2017). To get an
impression of their performance on our current data, we
performed a pilot experiment with three convolutional
neural networks. The first was a home-built network
(HBN17) with 17 convolutional layers, interspersed with six
max-pooling layers, and followed by two fully connected
layers outputting the two class probabilities (neuron versus
background). The second network was VGG19 (Simonyan
and Zisserman 2014), with one modification, because the
image patch sizes in our study were more than four times
larger than what VGG19 was originally designed for, which
increased the number of network parameters and thus the
memory usage to the point that we were not able to train
the network on our available computers. Therefore we
reduced the number of filters in the convolution layers
by a factor of 16 and made the network return only two
class probabilities to match our application. And the third

network was ResNet50 (He et al. 2016) modified so as to
return only two class probabilities. To train the networks
we used categorical cross-entropy (Ghosh et al. 2017) as
the loss function and Adam (Kingma and Ba 2014) as the
optimizer. The networks were trained on the same balanced
data set as the classifiers studied in this work and were
tested using the same 3×10-fold cross-validation approach.
The results showed that VGG19 performed best (median
AUROC of 0.960), followed by ResNet50 (median AUROC
of 0.947), and HBN17 (median AUROC of 0.936). Clearly
the networks are as yet outperformed by the best classifiers
considered in this study. Better results may be achieved not
only by acquiring more data but also by applying stronger
data augmentation than done here. Another direction for
future research would be to reformulate the problem as
a multiclass detection challenge, distinguishing not only
between neurons and background, but also incomplete or
out-of-focus neurons, astrocytes, and artifacts.

Achieving AUROC values between 0.97 and 0.98, the
best models considered in the present study are already very
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Fig. 10 Results of the
Friedman-Finner test showing
the statistical significance of the
differences in performance of
the considered models
(classifiers SVM, RF, KNN, and
GLMNET, using any of the
selected feature (sub)sets
CHARM, SIFT230,
CHARM+SIFT230, and the top
25, 100, 200, and 600 features
of the latter) with respect to the
control model (RF using
CHARM+SIFT230:600).
Performance values (AUROC)
of each model from all runs and
folds of the cross-validation
experiment are summarized
using the ggplot2 box plot.
Significance with respect to the
control model is indicated for
p > 0.05 (+), and
0.01 < p < 0.05 (*), and
p < 0.01 (**)
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suitable for detecting neurons in high-content fluorescence
microscopy images. As an example we applied the model
using the SVM classifier and the SIFT230 feature set to

one of our images (Fig. 11). In addition, to investigate
generalizability, we also applied it to a new, “unseen” image
from a new experiment. In that experiment, to introduce

Fig. 11 Example of neuron detection in high-content fluorescence
microscopy images. The images are shown with inverted intensities
(dark grayscale parts) compared to the original. Left: One of the eight
images used in the cross-validation experiment. Right: A new image
acquired in a later experiment and not used in the cross-validation

experiment. Here we used the SVM classifier with the SIFT230
feature set to classify square patches from a superimposed grid as
neuron (bright grayscale) versus non-neuron (dark grayscale). The
detected neuron regions correspond very well with the expert human
annotations (blue squares). Scale bars: 500 μm
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some variability, we used a transfection method with higher
efficiency (Bredenbeek et al. 1993), resulting in higher
intensities and larger numbers of neurons in the field of
view. In both images, to detect the neurons, a very simple
and low-cost detection approach was used, where square
patches (same patch size as used throughout this study)
from a superimposed grid were classified individually as
neuron versus non-neuron. If needed, more sophisticated
(but more computationally costly) detection schemes with
higher localization precision could be easily made, by
using finer grids with overlapping patches (keeping the
same patch size) and segmenting the positive responses.
But in our work, detection is only the first step in a
much more comprehensive pipeline we are developing for
fully automated neuron screening, where the actual neuron
reconstruction and downstream morphological analysis
is based on much higher-resolution images taken at
the locations detected in the low-resolution high-content
images. From the results presented in this study we conclude
that machine learning approaches are very suitable for this
initial detection task and can drastically reduce the high-
resolution scan time and analysis.
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