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ABSTRACT

The study of neuronal cell morphology and function in rela-
tion to neurological disease processes is of high importance
for developing suitable drugs and therapies. To accelerate
discovery, biological experiments for this purpose are increas-
ingly scaled up using high-content screening, resulting in vast
amounts of image data. For the analysis of these data fully au-
tomatic methods are needed. The first step in this process is
the detection of neuron regions in the high-content images.
In this paper we investigate the potential of two machine-
learning based detection approaches based on different fea-
ture sets and classifiers and we compare their performance to
an alternative method based on hysteresis thresholding. The
experimental results indicate that with the right feature set
and training procedure, machine-learning based methods may
yield superior detection performance.

Index Terms— Neuron screening, high-content analysis,
feature extraction, object detection, machine learning.

1. INTRODUCTION

Neurons are excitable cells with the extraordinary ability of
processing and transmitting information. In the human brain
billions of neurons interconnect through axons and dendrites
to form a highly complex network that constructs our percep-
tion of the external world and controls the mechanics of our
actions [1]. Different parts of the brain fulfill different func-
tions in this process and, correspondingly, the neuronal cells
involved typically have different morphologies. As neuron
morphology and function are intimately intertwined, altered
morphology has been implicated in various brain pathologies
that cause progressive loss of function, such as Alzheimer and
Parkinson, but also in ageing [2]. Thus the study of neuronal
cell morphology in relation to specific disease processes and
the effects of drug compounds is of high importance for de-
veloping suitable drugs and therapies [3].
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An exciting recent development in neuroscience is the use
of high-content analysis (HCA). HCA generally refers to the
combination of automated acquisition and analysis of large
microscopic image data sets for biological discovery and is
often employed by pharmaceutical and biotechnology com-
panies but increasingly also in academia and research insti-
tutes [4]. In view of the vast amounts of data and the desire to
eliminate possible human bias, automation is a key require-
ment in HCA, and thus the analysis methods must be highly
robust and reliable. Although challenging, HCA is now used
also in basic neuroscience research [5–7], and various image
analysis pipelines have already been developed for neuron
quantification in high-content image data [8–11].

The first step in an HCA pipeline for neuron screening
is to detect image regions of interest containing neurons as
opposed to background or irrelevant structures (Fig. 1). Com-
monly this is done by image prefiltering (denoising, illumi-
nation correction, contrast enhancement) followed by some
form of intensity-based thresholding. However, the images
often contain debris and other artifacts that are larger or more
complex than standard prefiltering techniques can eliminate,
and thus more sophisticated solutions are needed.

Here we investigate the potential of machine-learning
based approaches for automatic detection of neurons in mi-
croscopic images for HCA. Specifically, we implement and
compare two approaches based on different feature sets and
classifiers, and compare their performance to each other and
an intensity-based detection method, using expert manual
annotation as the gold standard. We demonstrate that with
the right feature set and training procedure, machine learning
can indeed improve neuron detection.

2. METHODS

2.1. Image Data and Annotation

For this study we used rat hippocampal neurons in culture
since their in-vivo morphological features are well conserved
in culture conditions (typically a pyramidal cell soma with
a complex dendritric tree) [12] and the relation of the hip-
pocampus with higher brain functions such as learning and



(a) Example high-content image. Scale bar: 800 px (≈ 600µm)

(b) Neuron region. (c) Background region.
Scale bar: 130 px (≈ 100µm) Scale bar: 130 px (≈ 100µm)

Fig. 1. Example of a high-content microscope image (a) and regions
containing a neuron (b) and background (c). Image intensities are
inverted here for displaying purposes.

memory are well established [13]. Two-dimensional (2D)
images were acquired with a Leica SP5 automated confo-
cal microscope (20× lens) using the Matrix modules. Each
image was about 10,000× 12,000 pixels (covering ≈ 70 mm2

of culture dish) and contained on the order of 40 transfected
(with the fluorescent protein GFP) neurons (Fig. 1). Speci-
mens usually have about 100 neurons but more than half are
not imaged as they are in different optical planes or close to
the borders of the dish. Eight images (total size > 1 GB) were
used in our experiments. An expert neurobiologist manually

marked all regions in these images that contained neurons (in
our case, 409 neurons were marked). Through this we learned
that neuron regions in our images are typically 500× 500 pix-
els. From the non-neuron regions in the images we randomly
sampled 1,000 patches of this size to serve as negative exam-
ples (background) for training the machine-learning methods.

2.2. Intensity Based Neuron Detection

Considering that transfected neurons ideally have clearly dif-
ferent intensities than the background, as a first approach we
used only intensity and connectivity information to detect
neurons in the images. The algorithm is based on hystere-
sis thresholding [14]. It starts with a breadth-first search
for image pixels with intensity above a global user-defined
threshold. This threshold is chosen sufficiently high to in-
clude pixels with very high probability of being part of a
neuron (true positives), and very low probability of being
background (false positives), while likely resulting in many
missed neuron pixels (false negatives). The latter are largely
added in a second round, in which segmented pixels from the
first round are taken as seeds in a depth-first search to find
connected pixels with intensity above a second, lower user-
defined threshold. This approach is sensible due to the way
cells are dyed in the experiments and allows for “graceful
degradation” of intensity within neuronal image structures.
The algorithm was implemented as a plugin for ImageJ [15]
and is referred to as LocationJ in the sequel.

2.3. Machine-Learning Based Neuron Detection

As an alternative to intensity based neuron detection we con-
sidered two machine-learning based approaches. Detection
was achieved by classification of image patches as positive
(containing neuron structure) or negative (containing back-
ground) using features computed from these patches. The
first approach was based on computing an extensive list of
image features using the WND-CHARM library [16]. Specif-
ically, over 1,000 features were computed, including many
different types of polynomial decompositions, high contrast
features, pixel statistics, and texture descriptors. Since not
all features may be equally relevant, in the training step a
Fisher discriminant score [17] was computed for each, which
allowed building a ranked preference list of features. In the
testing phase of the experiments we used the top-15% fea-
tures according this score. Classification of patches based on
these features was done using a weighted neighbor distances
(WND) classifier [16]. The second approach was based on
computing the scale-invariant feature transform (SIFT) [18],
resulting in keypoint descriptors of the image scale-space that
are highly distinctive and invariant to image scaling, rotation,
a range of affine distortions, and robust to noise and illumi-
nation change. Classification of patches based on these fea-
tures was done using a bag-of-words class model [19] and the
Naive-Bayes (NB) classifier from the WEKA toolkit [20].



2.4. Experimental Procedure

The performance of the methods was initially evaluated di-
rectly on the expert annotated neuron patches (positives) and
sampled background patches (negatives) as described above.
A random selection of 75% of the patches from each class
was used for training of the machine-learning based detectors
while the remaining 25% was used for testing. With Loca-
tionJ, a patch was classified as positive if it contained a con-
nected segment of at least 15 pixels. Given the classifica-
tion output and the annotation, the number of true positives
(TP), false positives (FP), and false negatives (FN) could au-
tomatically be determined for each method, from which the
classification performance was quantified in terms of recall
(TP/(TP+FN)) and precision (TP/(TP+FP)).

When using the machine-learning based detectors in prac-
tice, the patches to be classified must first be sampled from the
image. Since it is computationally very costly to exhaustively
check all possible patch locations in an image, in our applica-
tion 1,000 patches (of 500× 500 pixels as motivated above)
are sampled uniformly from the image, which suffices to cap-
ture the true neuron regions (typically only several dozens).
Thus in a second experiment we tested the performance of
the detectors when using the same patch size as before but
now using this sampling scheme. In this case the locations of
the considered patches typically did not match exactly with
those of the annotated patches. Therefore patches classified
as positive were further examined: if a positive patch over-
lapped less than 20% with any annotated neuron patch, it was
declared a false positive, and all positive patches overlapping
20% or more with the same annotated neuron patch were con-
sidered a unique (single) true positive match. The 20% thresh-
old may seem rather conservative but additional experiments
(not reported here) showed us that higher percentages did not
consistently improve the results.

Due to the sampling, many patches in the second exper-
iment potentially contained small portions of neuron struc-
tures, which to some degree caused a mismatch with the ini-
tial training set. Therefore we expected the performance of
the methods to be lower in the second experiment as com-
pared to the first. To improve performance we implemented a
bootstrapping approach, where the classifiers were retrained
in a second round using as negative examples only the false
positives from the first round, while continuing using the true
positive examples from the expert annotation. The machine-
learning detectors without (versus with) using bootstrapping
are referred to as WND-CHARM-A and NB-SIFT-A (versus
WND-CHARM-B and NB-SIFT-B).

3. RESULTS

The results of the first experiment are presented in Table 1.
Although WND-CHARM-A showed perfect recall, its pre-
cision was lower than LocationJ, indicating that it produced

Fig. 2. Example detection result using NB-SIFT-B. Shown are part
of a high-content microscope image of neurons and the borders of
various patches overlaid in color coding: an expert annotated neuron
region missed by the detector (red), two annotated regions found by
the detector (white), true-positive patches (yellow) ignored by the
detector in favor of the best overlapping patch (green), and false-
positive patches (magenta). Scale bar: 130 px (≈ 100µm).

more false positives and the training set did not well-reflect
possible background variability. Precision was drastically im-
proved by using the bootstrapped variant, WND-CHARM-B,
with still near-perfect recall. Bootstrapping improved the per-
formance of NB-SIFT in terms of both measures, resulting in
a better recall than with LocationJ but a slightly lower pre-
cision. The negative effect of patch sampling on the perfor-
mance of all methods is seen from the results of the second
experiment in Table 2. As anticipated, in virtually all cases
both the recall and the precision was considerably lower than
in the first experiment. The differences between the two mea-
sures are also much higher, with the precision being substan-
tially lower than the recall in all cases, indicating an increase
of false positives. Of the machine-learning approaches only
NB-SIFT-B performed better than LocationJ in terms of both
measures in these experiments. Example detection results
from NB-SIFT-B are shown in Fig. 2.



Method Recall Precision
LocationJ 0.80 0.86

WND-CHARM-A 1.00 0.62
WND-CHARM-B 0.97 0.82

NB-SIFT-A 0.74 0.46
NB-SIFT-B 0.88 0.83

Table 1. Results of the first experiment.

Method Recall Precision
LocationJ 0.64 0.50

WND-CHARM-A 0.89 0.19
WND-CHARM-B 0.66 0.44

NB-SIFT-A 0.60 0.26
NB-SIFT-B 0.94 0.57

Table 2. Results of the second experiment.

4. DISCUSSION

In this paper we have investigated the problem of neuron
detection in high-content microscope images from screening
experiments in neuroscience. We have evaluated the per-
formance of two machine-learning based approaches using
different feature sets and classifiers in comparison with a
method based on hysteresis thresholding of intensity infor-
mation only. The results showed that machine-learning ap-
proaches may perform superiorly. However this improvement
does not come lightly but requires careful consideration of the
ingredients. Of the two machine-learning based approaches
considered, the best results were obtained with NB-SIFT in
combination with a bootstrapping procedure for the training
stage, even though WND-CHARM takes into account a much
wider variety of image features. This suggests that selection
of the right feature set as well as the right training set is cru-
cial to achieve good detection performance. In future work
we aim to perform a more detailed study of the effects of dif-
ferent types of features in combination with different types of
classifiers and training procedures. The ultimate goal of our
research is to develop fully automatic methods for studying
the structural and functional effects of mutations and of new
drugs in neurological diseases. In addition to detection and
localization of neuron regions in high-content images this
requires accurate neuron reconstruction and analysis of the
complexity of the dendritic arborizations and spine proper-
ties. To this end higher-resolution scans of the specimen are
needed in those areas where neurons are found. The use of
reliable neuron detection methods will greatly improve the
efficiency of such experiments. This underscores the impor-
tance of further reducing false-positive detections and will be
further explored in future work.
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